PhD Thesis Defense

Robustness and Structure of Complex Networks

0

Shuai Shao

Boston University, Physics Department Advisor: Prof. Gene Stanley Co-advisor: Prof. Shlomo Havlin Collaborators: Xuqing Huang, Xin Yuan, Prof. Xin Zhang, Prof. Sergey Buldyrev, Prof. Huijuan Wang

> BOSTON UNIVERSITY

Overview: Projects and Publications

Percolation of localized attack on complex networks:

- 1. Percolation of localized attack on complex networks (NJP 17(2), 023409)
- 2. The influence of the broadness of the degree distribution on network's robustness: comparing localized attack and random attack (arXiv: 1504.06900)

Networks with clustering structure:

- 1. The robustness of interdependent clustered networks (EPL 101(1), 18002)
- 2. Robustness of a partially interdependent network formed of clustered networks (PRE 89(3), 032812)
- 3. Network of interdependent networks: overview of theory and applications (Networks of Networks: The Last Frontier of Complexity, 3-36)

Empirical study of real-world networks:

1. Dynamic motifs in socio-economic networks (EPL 108(5), 58001)

Overview: Projects and Publications

- Percolation of localized attack on complex networks:
- 1. Percolation of localized attack on complex networks (NJP 17(2), 023409)
- 2. The influence of the broadness of the degree distribution on network's robustness: comparing localized attack and random attack (arXiv: 1504.06900)
- Networks with clustering structure:
- 1. The robustness of interdependent clustered networks (EPL 101(1), 18002)
- Robustness of a partially interdependent network formed of clustered networks (PRE 89(3), 032812)
- 3. Network of interdependent networks: overview of theory and applications (Networks of Networks: The Last Frontier of Complexity, 3-36)
- Empirical study of real-world networks:
- 1. Dynamic motifs in socio-economic networks (EPL 108(5), 58001)

Outline

- Background
- Part I: Robustness of complex networks under localized attack
- Part II: Robustness of interdependent networks with clustering
- Summary

Background: Complex Networks

Complex networks are present in almost every aspect of our life: The Internet Airline Networks Social Networks Neural Networks

Background: Terminology

Network: a set of nodes connected with links

Degree k: number of links connected to a node

Degree distribution p(k): the probability that a randomly chosen node has degree k

Generating function of degree distribution: ∞

$$G_0(x) = \sum_{k=0} p(k) x^k$$

Background: Random-regular Network (RR)

RR: each node is connected to exactly k_0 other nodes randomly $p(k) = \delta_{k,k_0}$ $G(x) = x^{k_0}$

$$k_0 = 4$$

Background: Scale-free Network (SF)

SF: Most real-world networks are represented by scale-free graphs.

$p(k) = ck^{-\lambda}$, k=m,m+1,...,M

Power-law distribution

Network	Туре	n	m	z	l	$\gamma \lambda C^{(1)}$	C ⁽²⁾	r	References
Social film actors	undirected	449 913	25 516 482	113.43	3.48	2.3 0.20	0.78	0.208	[ASBS00, WS98]
Technological Internet	undirected	10 697	31 992	5.98	3.31	2.5 0.035	0.39	-0.189	[CCGJ02, FFF99]
Biological metabolic network	undirected	765	3 686	9.64	2.56	2.2 0.090	0.67	-0.240	[JTA+00]
protein interactions	undirected	2115	2 2 4 0	2.12	6.80	2.4 0.072	0.071	-0.156	[JMBO01]

R. Cohen and S. Havlin, Complex networks: structure, robustness and function

- If some nodes in the network are attacked and disabled, will the network keep functional (P_∞)?
- How many nodes should be attacked in order to collapse the entire network (p_c)?

1. Type of the attack: random attack, targeted attack, localized attack (a new type of attack)

1. Type of the attack: random attack, targeted attack, localized attack (a new type of attack)

2. Structure of the network: RR networks, ER networks, SF networks, clustered networks...

Outline

- Background
- Part I: Robustness of complex networks under localized attack
- Part II: Robustness of interdependent networks with clustering
- Summary

1. Type of the attack: random attack, targeted attack, localized attack (a new type of attack)

2. Structure of the network: RR networks, ER networks, SF networks, clustered networks...

Localized Attack: a new type of attack

Blast shakes a second reactor death toll soar

hyberia header war and a second seco

Motivation:

Most of percolation problems assume attacks being random or targeted, which is not the case for many realistic attacks.

Localized attack:

Attacking nodes by shell structure. Reflecting localized damages: computer viruses, earthquakes, floods...

Develop a theoretical framework for understanding the robustness of networks under localized attack?

0

$$P_{\infty} = ?, p_c = ?$$

Can percolation	on properties o	of localized attac	k be solved	ہ !?
	Lattice(Square)	RR	FR	SE
	0 500		$p_c = \frac{1}{1}$	$p_c = 0$
Random attack	$p_c = 0.593$	$p_c = (k_0 - 1)^{-1}$	** < k >	for $2 < \lambda < 3$
A new type of attack: Localized attack	$p_c = 0$	$p_c = (k_0^2 - 1)^{-\frac{k_0}{k_0 - 2}}$	$p_c = \frac{1}{\langle k \rangle}$	$p > 0$ for 2 < $\lambda < 3$

Theoretical framework: generating function method

$$G_0(x) = \sum_{k=0}^{\infty} p(k) x^k$$

$$G_{p0}(x) = \frac{1}{G_0(f)} G_0[f + \frac{G_0'(f)}{G_0'(1)}(x-1)]$$
 , where $f = G_0^{-1}(p)$

Relative size of the largest cluster P_{∞} and percolation threshold p_c can be solved from $G_{p0}(x)$

Percolation of localized attack: RR and ER

RR: $p_c(LA) < p_c(RA)$

Random regular networks are more robust against local attacks compared with random attacks

ER: $p_c(LA) = p_c(RA)$

Local attacks and random attacks have the same effects on Erdős-Rényi networks

Outline

- Background
- Part I: Robustness of complex networks under localized attack
- Part II: Robustness of interdependent networks with clustering
- Summary

1. Type of the attack: random attack, targeted attack, localized attack (a new type of attack)

2. Structure of the network: RR networks, ER networks, SF networks, networks with clustering

Structure of the network: Clustering

 $c = rac{3 imes (number of triangles in network)}{number of connected triples}$

$$=rac{N\sum_{st}tP_{st}}{N\sum_k inom{k}{2}P_k}.$$

			dustering coefficient C			
network	n	\boldsymbol{z}	measured	random grap	\mathbf{h}	
Internet (autonomous systems) ^a	6374	3.8	0.24	0.00060		
World-Wide Web (sites) ^b	153127	35.2	0.11	0.00023		
power grid ^c	4941	2.7	0.080	0.00054		
biology collaborations ^d	1520251	15.5	0.081	0.000010		
mathematics collaborations ^e	253339	3.9	0.15	0.000015		
film actor collaborations ^f	449913	113.4	0.20	0.00025		
company directors ^f	7673	14.4	0.59	0.0019		
word co-occurrence ^g	460 902	70.1	0.44	0.00015		
neural network ^c	282	14.0	0.28	0.049		
metabolic network ^h	315	28.3	0.59	0.090		
food web ⁱ	134	8.7	0.22	0.065		

Outline

- Background / Motivation
- Part I: Robustness of complex networks under localized attack
- Part II: Robustness of interdependent networks with clustering
- Summary

Summary

- 1. Proposed the theoretical framework for the robustness of complex networks under localized attack and solved the percolation properties
- 2. Compared localized attack and random attack on ER, RR and SF networks:
- ER networks are equivalently robust under two types of attack
- **RR** networks are more robust under localized attack
- Robustness of SF networks depends crucially on the scale parameter λ

3. Real-world networks are much more fragile to localized attack than to random attack

4. Clustering structure in interdependent networks makes the system less robust under attack.

