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Abstract
The recurrent infectious diseases and their increasing impact on the society has promoted
the study of strategies to slow down the epidemic spreading. In this review we outline the
applications of percolation theory to describe strategies against epidemic spreading on complex
networks. We give a general outlook of the relation between link percolation and the susceptible-
infected-recovered model, and introduce the node void percolation process to describe the
dilution of the network composed by healthy individual, i.e., the network that sustain the
functionality of a society. Then, we survey two strategies: the quenched disorder strategy where
an heterogeneous distribution of contact intensities is induced in society, and the intermittent
social distancing strategy where health individuals are persuaded to avoid contact with their
neighbors for intermittent periods of time. Using percolation tools, we show that both strategies
may halt the epidemic spreading. Finally, we discuss the role of the transmissibility, i.e., the
effective probability to transmit a disease, on the performance of the strategies to slow down
the epidemic spreading.
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1. INTRODUCTION

Increasing incidence of infectious diseases such
as the SARS and the recent A(H1N1) pandemic
influenza, has led to the scientific community to
build models in order to understand the epidemic
spreading and to develop efficient strategies to
protect the society.1–4 Since one of the goals of
the health authorities is to minimize the economic
impact of the health policies, many theoretical stud-
ies are oriented towards establishing how the strate-
gies maintain the functionality of a society at the
least economic cost.

The simplest model that mimics diseases where
individuals acquire permanent immunity, such as
the influenza, is the pioneer susceptible-infected-
recovered (SIR) model.5–8 In this epidemiologi-
cal model the individuals can be in one of the
three states: (1) susceptible, which corresponds to
a healthy individual who has no immunity, (2)
infected, i.e., a non-healthy individual and (3)
recovered, which corresponds to an individual who
cannot propagate anymore the disease because he is
immune or dead. In this model the infected individ-
uals transmit the disease to the susceptible ones,
and recover after a certain time since they were
infected. The process stops when the disease reaches
the steady state, i.e., when all infected individu-
als recover. It is known that in this process, the
final fraction of recovered individuals is the order
parameter of a second order phase transition. The
phase transition is governed by a control parame-
ter which is the effective probability of infection or
transmissibility T of the disease. Above a critical
threshold T = Tc, the disease becomes an epidemic,
while for T < Tc the disease reaches only a small
fraction of the population (outbreaks).8–11 The first
SIR model, called random mixing model, assumes
that all contacts are possible, thus the infection
can spread through all of them. However, in real-
istic epidemic processes individuals have contact
only with a limited set of neighbors. As a conse-
quence, in the last two decades the study of epi-
demic spreading has incorporated a contact network
framework, in which nodes are the individuals and
the links represent the interactions between them.
This approach has been very successful not only
in an epidemiological context but also in economy,
sociology and informatics.5 It is well known that the
topology of the network, i.e., the diverse patterns
of connections between individuals plays an impor-
tant role in many processes such as in epidemic

spreading.12–15 In particular, the degree distribu-
tion P (k) that indicates the fraction of nodes with
k links (or degree k) is the most used charac-
terization of the network topology. According to
their degree distribution, networks are classified in
(1) homogeneous, where node’s connectivities are
around the average degree 〈k〉, and (2) heteroge-
neous, in which there are many nodes with small
connectivities but also some nodes, called hubs or
super-spreaders, with a huge amount of connec-
tions. The most popular homogeneous networks is
the Erdös Rényi (ER) network,16 characterized by
a Poisson degree distribution P (k) = e−〈k〉〈k〉k/k!.
On the other hand, very heterogeneous networks
are represented by scale-free (SF) distributions with
P (k) ∼ k−λ, with kmin < k < kmax, where λ rep-
resents the heterogeneity of the network. Histori-
cally, processes on top of complex networks were
focused on homogeneous networks since they are
analytically tractable. However, different researches
showed that real social,17,18 technological,19,20 bio-
logical21,22 networks, etc., are very heterogeneous.

Other works showed that the SIR model, at its
steady state, is related to link percolation.7,8,10,23
In percolation processes,24 links are occupied with
probability p. Above a critical threshold p = pc,
a giant component (GC) emerges, which size is of
the order of the system size N ; while below pc

there are only finite clusters. The relative size of
the GC, P∞(p), is the order parameter of a geo-
metric second order phase transition at the critical
threshold pc. Using a generating function formal-
ism,25–27 it was shown that the SIR model in its
steady state and link percolation belong to the same
universality class and that the order parameter of
the SIR model can be exactly mapped with the
order parameter P∞(p = T ) of link percolation.8 For
homogeneous networks the exponents of the tran-
sitions have mean field (MF) value, although for
very heterogeneous network the exponents depend
on λ.

Almost all the research on epidemics was con-
centrated in studying the behavior of the infected
individuals. However, an important issue is how
the susceptible network behaves when a disease
spreads. Recently, Valdez et al.28,29 studied the
behavior of the giant susceptible component (GSC)
that is the functional network, since the GSC is
the one that supports the economy of a soci-
ety. They found that the susceptible network also
overcomes a second order phase transition where
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the dilution of the GSC during the first epidemic
spreading can be described as a “node void perco-
lation” process, which belongs to the same univer-
sality class that intentional attack process with MF
exponents.

Understanding the behavior of the susceptible
individuals allows to find strategies to slow down
the epidemic spread, protecting the healthy net-
work. Various strategies has been proposed to halt
the epidemic spreading. For example, vaccination
programs are very efficient in providing immunity to
individuals, decreasing the final number of infected
people.30,31 However, these strategies are usually
very expensive and vaccines against new strains are
not always available during the epidemic spread-
ing. As a consequence, non-pharmaceutical inter-
ventions are needed to protect the society. One of
the most effective and studied strategies to halt
an epidemic is quarantine32 but it has the disad-
vantage that full isolation has a negative impact
on the economy of a region and is difficult to
implement in a large population. Therefore, other
measures, such as social distancing strategies can
be implemented in order to reduce the average
contact time between individuals. These “social dis-
tancing strategies” that reduce the average con-
tact time, usually include closing schools, cough
etiquette, travel restrictions, etc. These measures
may not prevent a pandemic, but could delay its
spread.

In this review, we revisit two social distancing
strategies: “social distancing induced by quenched
disorder”,33 and “intermittent social distancing”
(ISD) strategy,29 which model the behavior of indi-
viduals who preserve their contacts during the dis-
ease spreading. In the former, links are static but
health authorities induce a disorder on the links
by recommending people to decrease the duration
of their contacts to control the epidemic spread-
ing. In the latter, we consider intermittent con-
nections where the susceptible individuals, using
local information, break the links with their infected
neighbors with probability σ during an interval tb
after which they re-establish the connections with
their previous contacts. We apply these strategies
to the SIR model and found that both models
still maps with link percolation and that they may
halt the epidemic spreading. Finally, we show that
the transmissibility does not govern the temporal
evolution of the epidemic spreading, however, it
still contains information about the velocity of the
spreading.

2. THE SIR MODEL AND LINK
PERCOLATION

One of the most studied version of the SIR model
is the time continuous Kermack-McKendrick34

formulation, where an infected individual transmits
the disease to a susceptible neighbor at a rate β
and recovers at a rate γ. While this SIR version
has been widely studied in the epidemiology liter-
ature, it has the drawback to allow some individu-
als to recover almost instantly after being infected,
which is a highly unrealistic situation since any dis-
ease has a characteristic recovering average time.
In order to overcome this shortcoming, many stud-
ies use the discrete Reed-Frost model,35 where an
infected individual transmits the disease to a sus-
ceptible neighbor with probability β and recovers tr
time units after he was infected. In this model, the
transmissibility T that represents the overall proba-
bility at which an individual infects one susceptible
neighbor before recover, is given by

T =
tR∑

u=1

β(1 − β)u−1 = 1 − (1 − β)tR . (1)

It is known that the order parameter MI(T ), which
is the final fraction of recovered individuals, over-
comes a second order phase transition at a critical
threshold T ≡ Tc, which depends on the network
structure.

One of the most important features of the Reed-
Frost model (that we will hereon call SIR model) is
that it can be mapped into a link percolation pro-
cess,7,8,23,36 which means that is possible to study
an epidemiological model using statistical physic
tools. Heuristically, the relation between SIR and
link percolation holds because the effective proba-
bility T that a link is traversed by the disease, is
equivalent in a link percolation process to the occu-
pancy probability p. As a consequence, both process
have the same threshold and belong to the same uni-
versality class. Moreover, each realization of the SIR
model corresponds to a single cluster of link perco-
lation. This feature is particularly relevant for the
mapping between the order parameters P∞(p = T )
of link percolation and MI(T ) for epidemics, as we
will explain below.

For the simulations, in the initial stage all the
individuals are in the susceptible state. We choose
a node at random from the network and infect it
(patient zero). Then, the spreading process goes as
follows: after all infected individuals try to infect
their susceptible neighbor with a probability β,
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Fig. 1 Effects of the cutoff sc on the mapping between the SIR model and link percolation for an ER network with 〈k〉 = 4
(Tc = 0.25), N = 105. In (a) we show the probability P (s) of a cluster of size s (including the size of the giant component) in
the SIR model for T = 0.27 (©) and T = 0.40 (!). We can see that the gap between the epidemic sizes and the distribution of
outbreaks increases with T . In Fig. (b) we show the simulation results for MI(T ) for sc = 1 (!) and sc = 200 (©). Note that
when sc = 200, we average the final size of infected clusters only over epidemic realizations. Considering only the conditional

averages, we can see that MI(T ) maps with P∞(p) (solid line). Our simulations were averaged over 104 realizations.

and those individuals that has been infected for tr
time steps recover, the time t increases in one. The
spreading process ends when the last infected indi-
vidual recovers (steady state).

In a SIR realization, only one infected cluster
emerges for any value of T . In contrast, in a per-
colation process, for p < 1 many clusters with a
cluster size distribution are generated.37 Therefore
we must use a criteria to distinguish between epi-
demics (GC in percolation) and outbreaks (finite
clusters). The cluster size distribution over many
realizations of the SIR process, close but above crit-
icality, has a gap between small clusters (outbreaks)
and big clusters (epidemics). Thus, defining a cutoff
sc in the cluster size as the minimum value before
the gap interval, all the diseases below sc are con-
sidered as outbreaks and the rest as epidemics (see
Fig. 1a). Note that sc will depend on N . Then, aver-
aging only those SIR realizations whose size exceeds
the cutoff sc, we found that the fraction of recov-
ered individuals MI(T ) maps exactly with P∞(p)
(see Fig. 1b). For our simulations, we use sc = 200
for N = 105.

It can be shown that using the appropriate cutoff,
close to criticality, all the exponents that charac-
terizes the transition are the same for both pro-
cesses.11,38,39 Thus, above but close to criticality

MI(T ) ∼ (T − Tc)β, (2)

P∞(p) ∼ (p − pc)β , (3)

with40

β =






1 for SF with λ ≥ 4 and ER
networks,

1
λ − 3

for 3 < λ < 4.
(4)

The exponent τ of the finite cluster size distribution
in percolation close to criticality is given by

τ =






5
2

for SF with λ ≥ 4 and ER
networks;

1
λ − 2

+ 2 for 2 < λ < 4.

(5)

For the SIR model and for a branching process (see
Sec. 3), there is only one “epidemic” cluster, thus
near criticality the probability of a cluster of size
s, P (s), has exponent τ − 1, where τ is given by
Eq. (5) (see Fig. 1a). For SF networks with λ " 3,
in the thermodynamic limit, the critical threshold is
zero, and there is not percolation phase transition.
On the other hand, for λ # 4 and ER networks, all
the exponents take the mean field (MF) values.

3. MATHEMATICAL APPROACH
TO LINK PERCOLATION

Given a network with a degree distribution P (k),
the probability to reach a node with a degree k by
following a randomly chosen link on the graph, is
equal to kP (k)/〈k〉, where 〈k〉 is the average degree.
This is because the probability of reaching a given
node by following a randomly chosen link is pro-
portional to the number of links k of that node
and 〈k〉 is needed for normalization. Note that, if
we arrive to a node with degree k following a ran-
dom chosen link, the total number of outgoing links
or branches of that node is k − 1. Therefore, the
probability to arrive at a node with k − 1 outgoing
branches by following a randomly chosen link is also
kP (k)/〈k〉. This probability is called excess degree
probability.41,42
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In order to obtain the critical threshold of link
percolation, let us consider a randomly chosen and
occupied link. We want to compute the probability
that through this link an infinite cluster cannot be
reached. For simplicity, we assume to have a Cayley
tree. Here we will denote a Cayley tree as a single
tree with a given degree distribution. Notice that
link percolation can be thought as many realiza-
tions of Cayley tree with occupancy probability p,
which give rise to many clusters. By simplicity we
first consider a Cayley tree as a deterministic graph
with a fixed number z of links per node. Assuming
that z = 3, the probability that starting from an
occupied link we cannot reach the nth shell through
a path composed by occupied links, is given by

Qn(p) = [(1 − p) + pQn−1(p)]2. (6)

Here, the exponent 2 takes into account the number
of outgoing links or branches, and 1− p+ pQn−1(p)
is the probability that one outgoing link is not occu-
pied plus the probability that the link is occupied
(i.e., at least one shell is reached) but it cannot
lead to the following (n− 1)th shell.5 In the case of
a Cayley tree with a degree distribution, we must
incorporate the excess degree factor which accounts
for the probability that the node under considera-
tion has k − 1 outgoing links and sum up over all
possible values of k. Therefore, the probability to
not reach the nth generation can be obtained by
applying a recursion relation

Qn(p) =
∞∑

k=1

kP (k)
〈k〉

[(1 − p) + pQn−1(p)]k−1, (7)

= G1[(1 − p) + pQn−1(p)], (8)

where G1(x) =
∑∞

k=1 kP (k)/〈k〉xk−1 is the gener-
ating function of the excess degree distribution. As
n increases, Qn ≈ Qn−1 and the probability that we
cannot reach an infinite cluster is

Q∞(p) = G1[(1 − p) + pQ∞(p)]. (9)

Thus, the probability that the starting link connects
to an infinite cluster is f∞(p) = 1 − Q∞(p). From
Eq. (9), f∞(p) is given by

f∞(p) = 1 − G1[1 − pf∞(p)]. (10)

The solution of equation can be geometrically
understood in Fig. 2 as the intersection of the iden-
tity line y = x and y = 1 − G1(1 − px), which has
at least one solution at the origin, x = f∞(p) = 0,
for any value of p. But if the derivative of the
right hand side of Eq. (10) with respect to x,
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Fig. 2 Geometrical solution of Eq. (10). The straight line
y = x represents the left hand side of the equation. The dot-
dashed line represents the right hand side (r.h.s) for p = pc,
where the r.h.s. is tangential to y = x at the origin. The
dashed curve represents the r.h.s. for p > pc. The verti-
cal arrows indicate the points at which the identity function
intersects with y = 1−G1(1− px). Both cases are computed
for the Poisson degree distribution with 〈k〉 = 4.

[1 − G1(1 − px)]′|x=0 = pG′
1(1) > 1, we will have

another solution in 0 < x ≤ 1. This solution
x = f∞(p) has the physical meaning of being the
probability that a randomly selected occupied link
is connected to an infinite cluster. The criticality
corresponds to the value of p = pc at which the
curve 1 − G1(1 − px) has exactly slope equal one.
Thus pc is given by43

pc ≡
1

G′
1(1)

=
〈k〉

〈k2〉 − 〈k〉
. (11)

For ER networks, we have pc = 1/〈k〉. On the
other hand, we can obtain the order parameter of
link percolation P∞(p), which represents the frac-
tion of nodes that belongs to the giant cluster
when a fraction p of links are occupied in a ran-
dom Cayley tree. The probability that a node with
degree k does not belong to the giant component
is given by the probability that none of its links
connect the node to the GC, i.e., [1 − pf∞(p)]k.
Thus the fraction of nodes that belong to the GC is
1−

∑∞
k=0 P (k)[1− pf∞(p)]k. Since the relative epi-

demic sizes in the SIR model maps exactly with the
relative size of the giant component, we have that

MI(T ) = P∞(p = T ) = 1 − G0[1 − pf∞(p)], (12)

where G0(x) =
∑∞

k=0 P (k)xk is the generating
function of the degree distribution and f∞(p) is
the non-trivial solution of Eq. (10) for p > pc.
It is straightforward to show that for ER net-
works G0(x) = G1(x) = exp [−〈k〉(1 − x)] and thus
f∞(p) = P∞(p). For pure SF networks, with 1 ≤
k < ∞, the generating function of the excess degree
distribution is proportional to the poly-logarithm
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function G1(x) = Liλ(x)/ξ(λ), where ξ(λ) is the
Riemann function.42

In the current literature, the epidemic spread-
ing is usually described in terms of compartmental
quantities, such as the fraction of infected or suscep-
tible individuals during an epidemic, and very little
has been done to describe how the disease affects
the topology of the susceptible network that can be
considered as the functional network. In the follow-
ing section, we explain how an epidemic affects the
structure of the functional network in the steady
state.

4. NODE VOID PERCOLATION
AND THE SIR MODEL

We define “active” links as those links pairing
infected and susceptible individuals. During the epi-
demic spreading, the disease is transmitted across
active links, leading in the steady state to a cluster
composed by recovered individuals and clusters of
susceptible individuals. Alternatively, the growing
process of the infected cluster can also be described
as a dilution process from the susceptible point of
view. Under this approach, as the “infectious” clus-
ter grows from a root, the sizes of the void clusters,
i.e., those clusters composed by susceptible individ-
uals, are reduced as in a node dilution process, since
when a link is traversed a void cluster loses a node
and all its edges. However, the susceptible nodes
are not randomly uniform reached by the disease
because they are chosen following a link. As a con-
sequence higher degree nodes are more likely to be
reached than the ones with small degrees. We will
call “node void percolation” to this kind of per-
colation process in which the void nodes are not
removed at random. In this dilution process, there
exists a second critical value of the transmissibility
T ∗ (with T ∗ > Tc), above which the giant suscepti-
ble component (GSC) is destroyed.

Similarly to link percolation, in a Cayley tree
(branching process) the analytical treatment for the
dilution of the susceptible network uses a generat-
ing function formalism, that allows to compute the
existence of a GSC and its critical threshold.

Considering the same growing infected cluster
process as in the previous section, for large gen-
erations f∞(p = T ) can also be interpreted as the
probability that starting from a random chosen link,
a path or branch leads to the GC. Thus, if we cannot
reach a GC through a link, as we have a single tree,
that link leads to a void node. Thus the probability

V s to reach a void node through a link is given by

V s = 1 − f∞(T ) = G1[1 − pf∞(T )], (13)

which is also the probability to reach a susceptible
individual by following a link at a given transmis-
sibility T . It was shown that V s is a fundamental
observable to describe the temporal evolution of an
epidemic.28,44,45 As in the usual percolation process,
there is a critical threshold V s

c at which the suscep-
tible network undergoes a second order phase tran-
sition. Above V s

c a GSC exists while at and below
V s

c susceptible individuals belong only to finite com-
ponents. As a consequence, the transmissibility T ∗

needed to reach this point fulfills29

V s
c = G1[1 − T ∗f∞(T ∗)]. (14)

Therefore, from Eq. (14) we obtain the self consis-
tent equation

V s
c = G1[1 − T ∗(1 − V s

c )], (15)

where T ∗ is the solution of Eq. (15) and V s
c is

given by V s
c = G1[(G′

1)−1(1)]28 as can be seen in
Appendix A and Ref. 28. Thus for a virulent disease
with T ≥ T ∗ > Tc, we have V s < V s

c and therefore
the size of the GSC S1 → 0.29 The theoretical value
of S1 for a given value of V s can be obtained using
an edge-based compartmental approach28,44,45 that
it is explained in Appendix A.

When V s → V s
c , the size of the giant compo-

nent S1 and the distribution of void cluster’s sizes
nv

s , behave with the distance to criticality as power
laws.

S1 ∼ (V s − V s
c )β , for V s $ V s

c , (16)

nv
s ∼ sτ , at V s

c , (17)

but in contrast to link percolation, their critical
exponents have MF values, i.e., β = 1 and τ = 5/2
for homogeneous and heterogeneous networks [see
Fig. 3 and Eqs. (4)–(5)]. Since two critical expo-
nents are enough to characterize a phase transition,
then all the critical exponents have MF values, as in
an intentional attack percolation process indepen-
dently of the network’s topology.28,46

These results are not only restricted to the steady
state, but also can be extended to the tempo-
ral evolution of an epidemic spreading. It can be
shown that during the spreading, the GSC dilutes
as in a node void percolation process. In particular,
for T > T ∗, there exists a critical time at which
the GSC has the second order transition that we
explained before. For further details, see Ref. 28.
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Fig. 3 Fraction S1 of nodes belonging to the GSC, as a function of V s for N = 105 in an ER network and 〈k〉 = 4 (a)
and SF network with λ = 2.63, kmin = 2 with 〈k〉 = 4 (b). The solid lines correspond to the solution of Eqs. (A.2)–(A.5)
and simulations are in symbols. In the insets, we show the power-law behavior of S1 with the distance to the criticality V s

c .
Similarly, in figures (c) and (d) we plot the void node cluster size distribution at V s

c for ER (V s
c = 1/4) and SF networks

(V s
c = 0.38), respectively. For homogeneous and heterogeneous networks the critical exponents are always those of MF [see

Eqs. (4)–(5)] with values β = 1 and τ = 5/2.

All the concepts and tools previously introduced
provide the basis for the study of the spread of an
epidemic and the evolution of the GSC that will
be applied to the analysis of strategies against the
epidemic spreading.

5. SOCIAL DISTANCING INDUCED
BY QUENCHED DISORDER

Living in society implies that individuals are con-
stantly interacting with each other. Interactions
may take different forms, but those involving prox-
imity or direct contact are of special interest
because they are potential bridges to propagate
infections. Empirical data suggest that human con-
tacts follow a broad distribution.47–49 These results
support the idea that social interactions are het-
erogeneous, that means that individuals have a lot
of acquaintances but just a few of them are close
contacts. This heterogeneity between contacts can
be thought as a network with quenched disorder on
the links, wherein the disorder is given by a broad
distribution. For example, if the weights represent

the duration of the contacts between two individu-
als,42,50,51 the larger the weight, the easier is for an
infection to traverse the link.

An important feature of the networks topology
without disorder is the shortest average distance ',
defined as the minimum average number of connec-
tions between all pairs of nodes, which behaves as
' ∼ ln(N) for ER networks52 and as ln ln(N) for
very heterogeneous networks. This is why these net-
works are called small or ultra small world.53 It is
known that the disorder can dramatically alter some
topological properties of networks. Several studies
have shown that when the disorder between con-
nections is very broad or heterogeneous, also called
strong disorder limit (SD), the network loses the
small world property and the average distance goes
as a power of N for ER and SF networks with λ > 3
due to the fact that the SD can be related to perco-
lation at criticality.42,54–56 However, the exact map-
ping between the order parameter of both second
order phase transitions of percolation and SIR is
not affected by a random disorder.

In the real life, the disorder in the network can be
modified by health policies in order to, for example,
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delay the disease spreading allowing the health ser-
vices to make earlier interventions.33 Using differ-
ent methods like broadcasting, brochures or masks
distribution, the public health agencies can induce
people to change their effective contact time and
therefore the heterogeneity of the interactions. This
strategy was tacitly used by some governments in
the recent wave of influenza A(H1N1) epidemic in
2009,4 but until now the effectiveness of the strategy
and how it depends on the virulence and the struc-
ture of the disease has not been widely studied.

We study how the heterogeneity of the disorder
affects the disease spreading in the SIR model for
a theoretical quenched disorder distribution with a
control parameter for its broadness. Using a theo-
retical disorder distribution given by,

P (w) =
1

aw
, (18)

where P (w) += 0 in [e−a,1], and a is the parameter
which controls the width of the weight distribution
and determines the strength of the disorder. Note
that as a increases, more values of the weight are
allowed and thus the distribution is more heteroge-
neous.

In our weighted model the spreading dynamics
follow the rules of the SIR model explained in Sec. 2,
with a probability of infection that depends on the
weight of each link, such that each contact in the
network has an infection probability βw, where β
represents the virulence characteristic of the disease
in absence of disorder.

This type of weight has been widely used54,56–58

and it is a well known example of many distribu-
tions that allow to reach the strong disorder limit

in order to obtain the mapping with percolation.
With this weight distribution the transmissibility
T (β, tr, a) = Ta is given by Eq. (1) replacing β by
βw and integrating over the weight distribution,59
thus

Ta =
tr∑

u=1

∫ 1

e−a
βw

(1 − wβ)u−1

aw
dw

=
tr∑

u=1

(1 − βe−a)u − (1 − β)u

au
. (19)

Note that, in the limit of a → 0 we recover the
classical SIR model (non disordered) with a fixed
infection probability β with T = 1−(1− β)tr . When
a → ∞ there will be links in the network with zero
weight and the strategy turns to a total quarantine
with Ta → 0. For example, if tr = 1, Ta = β(1 −
e−a)/a , β/a with a - 1, thus the transmissibility
Ta will be smaller than the intrinsic transmissibility
T of the disease without strategy for any a > 0,
reducing the epidemic spreading.

In the following, we only consider those propaga-
tions that lead to epidemic states, and disregard the
outbreaks. As the substrate for the disease spread-
ing we use both, ER and SF networks. After the
system reaches the steady state, we compute the
mass of recovered individuals MI(a) and the size
of the functional network S1(a) as a function of a.
Given an intrinsic transmissibility T of the disease
before the strategy is applied (see Eq. (1)), as a
increases, the impact of the disease on the pop-
ulation decreases as shown in Fig. 4. We can see
that in ER networks Fig. 4(a) there is a thresh-
old a = ac(β, tr) above which the epidemic can
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Fig. 4 Linear-linear plots of the mass of recovered individuals MI(a) (◦) and S1(a) (!) in the steady state of the epidemic
spreading as a function of the strength parameter of the disorder a for N = 105, β = 0.05 and tr = 20 in an ER network with
〈k〉 = 4 (a) and SF network with λ = 2.63 (b). Dotted lines are given as guides for the eye. Note that without disorder, the
transmissibility is T & 0.64, and as a increases the effective transmissibility Ta decreases, and the disease gets less virulent.
The insets shows MI(a) from the main plot and P∞ as a function of Ta and p showing the exact mapping between our model
and percolation. Our simulations were averaged over 104 realizations.
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be stopped and only outbreaks occurs (epidemic
free phase). However for very heterogeneous SF net-
works Fig. 4(b), ac(β, tr) must increase noticeably
in order to stop the epidemic spreading. For the
steady magnitudes, the SIR process is always gov-
erned by the effective transmissibility Ta given by
Eq. (19), as shown in the inset of Fig. 4.

With the disorder strategy, the contact time
between infected and susceptible individuals
decreases hindering the disease spreading and pro-
tecting the functional network. We will refer to this
defense mechanism of healthy individuals as “sus-
ceptible herd behavior”. As explained in Sec. 4,
there is a T ∗ that is the solution of Eq. (15) below
which the susceptible herd behavior generates a
GSC. In Fig. 5 we show the cluster size distribu-
tion of the susceptible individuals ns for Ta , T ∗

and for Ta < T ∗ for ER networks, which show that
the exponent τ = 5/2 takes the mean field value of
node percolation.

In Fig. 6 we plot the plane T − a in order to
show how Ta depends on the intrinsic transmissi-
bility of the disease T and on the heterogeneity of
the disorder a. The full line in the plane T − a cor-
responds to a Ta = Tc = 0.25, and separates the
epidemic free phase (non-colored region) from the
epidemic phase (dark gray region). Note that a is a
parameter that could be controlled by the author-
ities, therefore the plane T − a shows the required
heterogeneity of the disorder needed to avoid an
epidemic spreading depending on the virulence of
the disease, characterized by the intrinsic T . The
dashed line corresponds to a Ta = T ∗, below which
a GSC emerges. The light gray area indicates the
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Fig. 5 Cluster size distribution of the susceptible individ-
uals for β = 0.05 and tr = 20. Circles correspond Ta = 0.46
with a = 1.0 where there are clusters of all sizes of sus-
ceptible individuals. The dashed line is a fitting from which
ns ∼ s−2.5 and is set as a guide to the eye. The diamonds
correspond to Ta = 0.40 with a = 1.5 for which suscepti-
ble individuals show a herd behavior. Our simulations were
averaged over 104 realizations.
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Fig. 6 Plane T − a for the SIR model with tr = 20 and
infection probability distribution for each contact βw with
weight distribution P (w) = 1/aw in [e−a, 1]. The solid line
that corresponds to Ta = 1/4 that is Tc for an ER network
with 〈k〉 = 4, separates the epidemic phase from the epidemic
free phase region shown in dark gray. The dashed line shows
Ta = 0.46 that is T ∗ below which a giant component of sus-
ceptible emerges. The light gray region is the phase in which
the GSC and the giant recovered cluster coexists.

phase where there is a coexistence of giant clusters
of infected and susceptible individuals.

In this strategy, there are no restrictions on which
individual to get away from. Another strategy could
be to advise people to cut completely their connec-
tion with their infected contacts (when possible) for
a given period of time. This kind of strategy will be
analyzed in the next section.

6. INTERMITTENT SOCIAL
DISTANCING STRATEGY

In the previous strategy, individuals set a quenched
disorder on the intensity of the interaction with
their neighbors in order to protect themselves from
the epidemic spreading. An alternative strategy
consists of susceptible individuals that inactivate
the interactions with their infected neighbors, but
reestablish their contacts after some fixed time.
This strategy that we call intermittent social dis-
tancing (ISD) strategy mimics a behavioral adap-
tation of the society to avoid contacts with infected
individuals for a time interval, but without losing
them permanently. This is an example of adap-
tive network where the topology coevolves with the
dynamical process.60,61

Specifically, we study an intermittent social dis-
tancing strategy (ISD) in which susceptible individ-
uals, in order to decrease the probability of infec-
tion, break (or inactivate) with probability σ their
links with infected neighbors for intermittent peri-
ods of length tb.

We closely follow the presentation of this model
from Ref. 29. Assuming that the disease spreads
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with probability β through the active links and that
the infected individuals recovers after tr time steps,
at each time step the infected individual tries first
to transmit the disease to his susceptible neighbors,
and then if he fails, susceptible individuals break
their links with probability σ for a period tb.

These dynamic rules generate an intermittent
connectivity between susceptible and infected indi-
viduals that may halt the disease spreading. In the
limit case of tb > tr, the ISD strategy is equivalent
to a permanent disconnection, because when the
link is restored the infected neighbor is recovered
(or dead) and cannot transmit the disease anymore.

In order to compute the transmissibility for this
strategy, we first introduce the case σ = 1 and then
we generalize for any value of σ. For the case σ = 1,
let consider that an active link appears and denote
the first time step of its existence as m = 1. At
this time step, the active link tries to transmit the
disease with probability β, if it fails that link will
be broken for the next tb time steps. After restoring
that active link, the process is periodically repeated
with period tb + 1, until the disease is transmitted
or the infected individual recovers. On the other
hand, the time steps at which the link is active
are located at times m = (tb + 1)u + 1 where u is
an integer number defined in the interval 0 " u "
[(tr − 1)/(tb + 1)], where u = 0 corresponds to the
first time step, and [(tr − 1)/(tb + 1)] is the max-
imum number of disconnection periods that leaves
at the end at least one time step to transmit the
disease. In particular, the probability to transmit
the disease at the next time after u disconnection

periods is given by β(1 − β)u. Then summing over
all possible values of u, the total transmissibility
T (β,σ, tr, tb) ≡ Tσ

29 is given by

Tσ = β



1 +

[ tr−1
tb+1 ]∑

u=1

(1 − β)u



,

= 1 − (1 − β)[
tr−1
tb+1 ]+1

. (20)

For the case 0 < σ < 1, first consider the exam-
ple with only one disconnection period (u = 1),
tr = 10, tb = 2 and the infectious transmission at
the time step m = 8, that is illustrated in the first
line of Table 1. Note that in this case, there are only
m − utb = 6 time units at which the link is active.
Then, for this example the transmissibility is pro-
portional to four factors: (1) β(1 − β)5 since there
are five active time steps at which the infected indi-
vidual cannot transmit the disease, and at the last
time unit the disease is transmitted, (2) σ, because
the link is broken one time, (3) (1 − σ)4, because
during six active time steps the infected individual
does not break the link except just before each inac-
tive period and the last day, and (4)

(m−utb−1
u

)
=(5

1

)
= 5 that is the total number of configurations in

which we can arrange one inactive period in a period
of length 7 (this factor only takes into account the
first m − 1 = 7 time units, because the disease
is transmitted at time m = 8. See the first line
of Table 1). In the general case, for all the val-
ues 0 < m " tr, the disease spreads with a total

Table 1 Disconnected Periods for a Pair S − I with tr = 10 (Recovery Time), tb = 2
(Disconnection Period) and m = 8 (Time of Infection).

u Example Probability Binomial
Coefficient

u = 1
∆t = 1

tr

βσ(1 − σ)4(1 − β)5
`8−2−1

1

´
= 5

u = 2 βσ2(1 − σ)1(1 − β)3
`8−4−1

2

´
= 3

Note: The first column represents the number of disconnected periods u before m = 8, the second
column is a typical configuration, the third column is the probability of that configuration and the
fourth column is the number of ways to arrange u disconnected periods. In the second column, each
cell correspond to a time unit. The white cells represent the time units where a link between the S and
the I node exists, the gray ones correspond to the disconnection period and in the black cells there
is no dynamic for the pair S − I because the S has been infected and now the pair becomes I − I .
Notice that initially the link cannot be broken because this disconnection only happens after that the
I individual fails to infect the susceptible one, with probability (1 − β). Similarly, two disconnection
periods must be separated by at least one white cell.
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transmissibility given by,

Tσ =
tr∑

m=1

β(1 − β)m−1(1 − σ)m−1

+ β
tr∑

m=tb+2

φ(m, tb,σ,β). (21)

In the first term of Eq. (21), β(1− β)m−1(1− σ)m−1

is the probability that an active link is lost due to
the infection of the susceptible individual at time
step m given that the active link has never been bro-
ken in the m− 1 steps since it appears. In the second
term of Eq. (21), β φ(m, tb,σ,β) denotes the proba-
bility that an active link is lost due to the infection
of the susceptible individual at time m given that
the link was broken at least once in the first m − 1
time units. The probability φ(m, tb,σ,β), which is
only valid for m ≥ tb + 2 is given by29

φ(m, tb,σ,β) ≡ φm

=

[ m−1
tb+1 ]
∑

u=1

(
m − utb − 1

u

)
σu

× (1 − σ)m−1−u(tb+1)

× (1 − β)m−1−utb , (22)

where [·] denotes the integer part function.
With the ISD strategy29 the effective probabil-

ity of infection between individual decreases, i.e.,
Tσ < T and its minimal value Tσ = β corresponds
to the extreme case of fully disconnection σ = 1
and tr = tb − 1. As a consequence if 0 < β < Tc,
the values of the parameters of our strategy can be
tuned to stop the epidemic spreading.

In order to determine the effectiveness of the
ISD strategy, we plot the epidemic size MI(σ; tb) ≡
MI(σ) and the size of the functional susceptible net-
work S1(σ; tb) ≡ S1(σ) as a function of σ for ER and
SF networks for different values of tb and tr = 20. In
Fig. 7, we can see that MI(σ) decreases as σ and tb
increase compared to the static case MI(0). For the
SF network the free-epidemic phase (MI(σ) = 0)
is only reached for higher values of tb and σ than
for ER networks. In any case, for both homogeneous
and heterogeneous networks, the strategy is success-
ful in protecting a giant susceptible component, for
high values of σ and tb.

Similarly to the disorder strategy, in this model
Tσ maps with a percolation process (see the insets
of Fig. 7), and also when Tσ = T ∗, the size distribu-
tion of the susceptible clusters behaves as ns ∼ s−2.5

(not shown here). In turn, in the ISD strategy the
susceptible individuals change dynamically their
connectivities with the infected neighbors, reducing
the contact time between them. This generates an
adaptive topology60 in which the susceptible nodes
aggregate into clusters that produce a resistance to
the disease. Therefore in the ISD strategy there is
also a “susceptible herd behavior”.

In order to study the performance of the strategy
protecting a GSC or preventing an epidemic phase,
in Fig. 8 we plot the plane σ−T [where T ≡ T (σ =
0)] for different values of tb, using Eq. (21) for Tσ =
Tc and Tσ = T ∗.

In Fig. 8 starting from the case without strategy
(line σ = 0) the epidemic phase and the phase with-
out GSC shrink when σ and tb increase. Note that
the light-gray area, delimited between the curves
which corresponds to the extreme blocking periods
tb = 1 and tb = tr − 1, displays the region of
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Fig. 7 MI(σ, tb) ≡ MI(σ) (◦) and S1(σ, tb) ≡ S1(σ) (!) vs. σ for N = 105, tr = 20 and β = 0.05 in an ER network with
〈k〉 = 4 (a) and SF with λ = 2.63, kmin = 2 and 〈k〉 = 4 (b) for tb = 10 (empty symbols) and tb = 19 (filled symbols). Dotted
lines are given as guides for the eye. In the insets we show MI(σ, tb) and S1(σ) from the main plot as functions of Tσ and the
curves MI(σ) and S1(σ) obtained from percolation theory (solid lines), which show the mapping between the ISD strategy
and percolation. Our simulations were averaged over 104 realizations.
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Fig. 8 Plot of the epidemics phase (a) and GSC phase (b) in the plane σ − T for tr = 20 and static Tc = 0.25, where T
corresponds to the transmissibility in a non adaptive network. The dashed lines correspond to the critical threshold trans-
missibility Tσ = Tc (a) and Tσ = T ∗ (b) for (from left to right) tb = 1, tb = tr/2 and tb = tr − 1. For tb = 1 and σ = 1,

T = 1− (1− Tc)tr/([(tr+1)/2]+1) or T ≈ 1− (1− Tc)2 is the maximum intrinsic transmissibility for which the epidemic phase
disappears when the ISD strategy is applied.

parameters controlled by the intervention strategy.
In particular, given tb and tr, the maximum intrin-
sic transmissibility at which the strategy can pre-
vent an epidemic phase or protect a GSC can be
obtained using Eq. (20) for Tσ = Tc or Tσ = T ∗

respectively, and β = 1 − (1 − T )1/tr . On the other
hand, note that in pure SF networks with 2 < λ " 3
and kmax = ∞, Tc = 0, which implies that the
strategy cannot halt the epidemic spreading for any
value of the intrinsic transmissibility. However, T ∗

is still finite on these topologies. Therefore, the ISD
strategy can always protect the functional network
for diseases with T < 1 − (1 − T ∗)tr .

For the disorder strategy, we can reach similar
conclusions because it is expected that the magni-
tudes in the steady state will behave in the same
way for any strategy that is governed by the trans-
missibility. However, as we will show below, the evo-
lution towards the steady state is different in both
strategies.

7. COMPARISON BETWEEN
THE ISD AND THE QUENCHED
DISORDER STRATEGY

In Fig. 9 we plot the distribution of the duration
time tf of an epidemic for the ISD strategy Pσ(tf )
and the quenched disorder strategy Pa(tf ) for the
same value of transmissibility Ta = Tσ.

From the figure, we can see that the quenched dis-
order strategy generates larger duration times of the
epidemic, i.e., the disease spreading is slower than
in the ISD strategy, which shows that the trans-
missibility does not govern magnitudes involved in
the dynamical behavior. However, the discrepancy
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Fig. 9 Distribution of final times tf in an epidemic spread-

ing, with N = 105, β = 0.05 and tr = 20 in a ER net-
work with 〈k〉 = 4 for the quenched disorder strategy with
a = 1.5 (dashed line) and ISD strategy (solid line) with
tb = 19 and σ = 0.0695. Both strategies have the same effec-
tive transmissibility value Ta = Tσ ≈ 0.39. The final average
time for the quenched disorder strategy is 〈tf 〉 = 406 and
〈tf 〉 = 290 for the ISD strategy, giving a ratio between these
times of 1.38. In the inset, we show the probability that an
active link transmits the disease at time m, since it appears
(with 1 " m " tr). The average time to traverse the dis-
ease is 〈m〉 = 3.75 for the quenched disorder strategy and
〈m〉 = 2.67 for the ISD strategy, and the ratio is 1.40 that
is compatible with the ratio between the most probable final
time for both strategies.

between the strategies can be explained from the
transmissibility’s terms of Eqs. (19) and (21).

Lets denote the first time step of the existence
of an active link as m = 1. Then using Eq. (19),
the probability pa(m) that the infected individual
transmits the disease at time step 1 " m " tr, for
the disorder quenched strategy, is given by

pa(m) =
∫ 1

e−a

βw(1 − βw)m

aw
dw

=
(1 − βe−a)1+m − (1 − β)1+m

a(1 + m)
. (23)
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Similarly, for the ISD strategy, the probability
pσ(m) that the infected individual transmits at time
1 " m " tr is,

pσ(m) = β(1 − β)m−1(1 − ω)m−1

+ β

[ m−1
tb+1 ]∑

u=1

(
m − utb − 1

u

)
σu

× (1 − σ)m−1−u(tb+1)(1 − β)m−1−utb .

(24)

From these probabilities, we compute the average
time steps 〈m〉 that takes to the disease to tra-
verse an active link for several values of the parame-
ters from both strategies, and we obtain that in the
quenched disorder strategy the disease needs more
time to infect a susceptible individual than in the
ISD strategy (see the inset in Fig. 9). Thus it is
expected that the final times tf in the former will
be longer than in the latter. On the other hand,
the ratio between the average times 〈m〉 is com-
patible with ratio between the most probable final
times of the distributions Pa(tf ) and Pσ(tf ). These
results show that we can use minimal information,
specifically the terms of the transmissibility in order
to determine if the strategy slows down the epi-
demic spreading. Since one of the goals of the health
authorities is to have more time to intervene, the
average time 〈m〉 could be used to compare, design
or optimize mitigation strategies.

8. SUMMARY

Percolation theory offers the possibility to explain
the epidemic spreading and mitigation strategies in
geometrical terms. In this brief review, we focused
on the applications of percolation theory for the
studying of social distancing strategies against the
epidemic spreading of the SIR model.

We described the dilution of the network com-
posed by susceptible individuals due to the disease
spreading as a “node void percolation” process, and
remark its importance in the development of strate-
gies that aims to protect the functional network.

Using the SIR model for the disease propaga-
tion, we presented two social distancing strategies:
the quenched disorder strategy, and the intermit-
tent social distancing strategy. We found that both
strategies can control the effective transmissibil-
ity in order to protect the society. In particular,
we described the protection of the GSC through
the formation of a susceptible herd behavior. On

the other hand, we showed that while the effective
transmissibility control the final fraction of recov-
ered individuals and the size of the GSC, it does not
control observables that depends on the dynamical
evolution of the process, such as the distribution of
the duration of an epidemic.

One of the advantages of having two strategies
that map with percolation theory is that we can fix
the transmissibility in order to compare them and
highlight the features of each strategy. Thus, for
example, the knowledge of the mean time 〈m〉 that
a disease requires to traverse an active link can be
used to determine which strategy is better in delay-
ing the epidemic spreading. Using the terms of the
transmissibility, we showed that the quenched dis-
order strategy increases this average time, and thus
the epidemic spreading is delayed compared to the
ISD strategy. Our results show that a disorder strat-
egy has a deeper effect on the spreading dynamics
than a local adaptive topology.

Our findings could themselves have important
applications for improving or designing mitigation
strategies, since new strains of bacteria and viruses
are continuously emerging or reemerging in multi-
drug resistant forms, demanding the development
of non-pharmaceutical intervention.
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APPENDIX A. EDGE-BASED
COMPARTMENTAL MODEL

The edge-based compartmental model,28,44,45 is a
new theoretical framework to describe the dynamic
of the disease spreading in the SIR model. Using
this approach we can obtain the relation between
V s and S1.

For clarity, we return to the SIR terminology, in
which a void node corresponds to a susceptible indi-
vidual and the node belonging to the giant perco-
lating cluster (in a branching process) corresponds
to a recovered individual.

In order to compute S1, we first calculate the
fraction of susceptible individuals and then subtract
the fraction of susceptible individuals belonging to
finite size clusters.

Consider an epidemic disease in the steady state.
We randomly choose a link and then give a direc-
tion to that link, in which the node in the target
of the arrow is called the root, and the base is
its neighbor. Denote θ as the probability that the
neighbor has never transmitted the disease to the
root, due to the fact that the neighbor is: (1) sus-
ceptible, or (2) recovered, but he has never trans-
mitted the disease to the root during its infectious
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period, i.e.,

θ = V s + (1 − p)f∞(p), (A.1)

where p = T . Therefore the probability that the
root with connectivity k is susceptible is θk, i.e., an
individual is susceptible only if none of his neigh-
bors have transmitted the disease to him. Then,
considering all the connectivities k, the fraction of
susceptible individuals in the steady state is G0(θ).
Note that V s can also be related to θ, since a node,
reached through a link, it is susceptible only if none
of its outgoing neighbors are connected to the giant
recovered cluster, that is,

V s = G1(θ). (A.2)

On the other hand, if we define ω as the probabil-
ity that the neighbor is (1) susceptible but it does
not belong to a GSC, or (2) recovered, but he has
never transmitted the disease to the root during its
infectious period, then we have,

ω = G1(ω) + (1 − p)f∞(p), (A.3)

where G1(ω) is similar to V s, but restricted only to
susceptible neighbors who belong to finite suscepti-
ble size clusters (see Eq. A.2).

Then, from Eqs. (A.2) and (A.3) we obtain

θ − G1(θ) = ω − G1(ω). (A.4)

Note that both hand sides of Eq. (A.4) have the
form x−G1(x). In Fig. A1, we illustrate the solution
of this equation.

Finally, for a given value of V s, we can solve
Eqs. (A.2) and (A.4), in order to compute the rela-
tive size of the GSC, as

S1 = G0(θ) − G0(ω), (A.5)

Fig. A1 Schematic of the behavior of Eq. (A.4). For θ *= ω
we have two solutions. When θ reaches the maximum of the
function x−G1(x), θc = ωc, the giant susceptible component
is destroyed [see Eq. (A.5)]. The dashed lines are used as a
guide to show the possible solutions of Eq. (A.4).

where G0(ω) is the fraction of void nodes belonging
to finite void clusters (see Ref. 28 for details).

On the other hand, from Eq. (A.4) we can obtain
the critical value V s

c at which S1 vanishes, i.e., when
G0(θ) = G0(ω). Note that this happens only when
θ = ω, because G0(x) is an strictly increasing func-
tion. In addition, since θ and ω fulfills Eq. (A.4),
θ = ω only at the maximum of x − G1(x) (see
Fig. A1). Then, denoting the maximum as θc = ωc,
we have that

[x − G1(x)]′|θc = 0, (A.6)

then,

θc = (G′
1)

−1(1). (A.7)

Thus using Eq. (A.2), the critical threshold
of the susceptible network is V s

c = G1(θc) =
G1[(G′

1)−1(1)], that for ER networks V s
c = 1/〈k〉.

Finally, we show the mean field exponent of S1

as a function of V s.
Near the critical threshold of the susceptible net-

work, the values of θ and ω from Eq. (A.4) are near
to θc, in which we can approximate the function
x − G1(x) as a parabola. Thus x − G1(x) ≈ a − b/
2(x−θc)2, where a and b are constants. Doing some
algebra on Eq. (A.4) around θc, we obtain

|ω − θc| ≈ |θ − θc|, (A.8)

i.e., θc is in the middle between ω and θ. Rewriting
θ and ω as ω ≈ θc−∆ and θ ≈ θc +∆, with ∆ / 1,
then near criticality, Eq. (A.5) can be approximated
by

S1 ≈ G0(θc + ∆) − G0(θc − ∆)

≈ 2G′
0(θc)(θ − θc). (A.9)

On the other hand, near criticality we have that

V s − V s
c = G1(θ) − G1(θc)

≈ G1(θc + ∆) − G1(θc)

≈ G′
1(θc)(θ − θc). (A.10)

Therefore, using the relations (A.9) and (A.10), we
obtain

S1 ∼ (V s − V s
c )β , (A.11)

with β = 1, that is a MF exponent. Note that we
have not made any assumption on the form of G1(x)
or G0(x). Thus, this result is valid for homogeneous
and heterogeneous networks.
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