

STATISTICAL PHYSICS APPLICATIONS TO RANDOM GRAPH MODELS OF NETWORKS

Traffic Bottlenecks in Networks

SAMEET SREENIVASAN

ADVISOR: H. EUGENE STANLEY

Collaborators:

Lidia A. Braunstein Sergey V. Buldyrev Reuven Cohen Tomer Kalisky Shlomo Havlin Eduardo López Gerald Paul Zoltan Toroczkai

← | →

NETWORK

NODES

LINKS

DEGREE: Number of links per node. Denoted by "k"

A

SCALE FREE NETWORK:

- Characterized by a power law in the degree distribution i.e P(k) ~ k^{-λ}. λ is called the degree exponent.
- A suitable abstraction of several networks, including the router-level internet.

QUESTIONS

Can we quantify the traffic **bottlenecks** in a network?

How does the bottleneck depend on the choice of paths for traffic flow ?

What is the inherent bottleneck due to network structure?

GENERATING SCALE-FREE NETWORKS:

 To each node i, assign a degree ki drawn from the degree distribution P(k). The node now has ki stubs.

• Randomly match pairs of stubs until no stubs remain.

Studies done on ensemble of graphs generated in this way.

b c

M. Molloy et al. Random Structures and Algorithms, 6, 161-180 (1995)

In a time step t :

Packet created with probability ρ . Destination node of packet chosen uniformly at random.

Packet may be received from neighbor.

First packet in queue forwarded towards destination node.

T. Ohira et al. Phys . Rev. E 58, 193 (1998)

CHOICE OF PATHS

◆ | ◆

ROUTING PROTOCOL assigns a path for each pair of nodes.

EXAMPLE:

SHORTEST PATH PROTOCOL= Assign the shortest path .

Assumption: The routing protocol does not change in time.

Let n(t) = number of packets on network at time t, N = Number of nodes in entire network.

For 2D Lattices: T. Ohira et al. Phys . Rev. E 58, 193 (1998), R.V. Sole et al. Physica A 289,595

BETWEENESS B = number of paths using the node

Flow into the node ∝ **BETWEENESS** of the node

The first node to get congested is the one with highest value of betweeness, B_{max}.

The congestion threshold :

.

$$\rho_c = \frac{N-1}{B_{max}}$$

QUEUE SIZE DISTRIBUTION

.

For a given γ only nodes with $B > (N-1)/\gamma$ have growing queues.

- The bottleneck is the node with $B = B_{max}$.
- Q1: How does B_{max} scale with N when the shortest path routing protocol is used ?
- Q2: How "good" is shortest path routing for a scale-free network ?
- Q3 : Is there an "inherent bottleneck" in the network ?

INHERENT BOTTLENECK IN A NETWORK

No. of paths that must pass through $C \ge 3x4 = 12$ \Rightarrow Highest Betweeness in C : $B \ge B^{c} = 12/2 = 6$

For one particular choice of C, we get the highest B^c:

 $max(B^{c}) = 12.$

For this network, for any routing protocol, $B_{max} \ge max(B^{C}) = 12$

A B

B

Thus, the node(s) with $B_I = max(B^c) = 12$ represent the inherent bottleneck in the network.

INTERESTED IN THE SCALING OF BI WITH N.

For a scale-free network with degree distribution $P(k) \sim k^{-\lambda}$

Using analytical arguments we obtain :

 $\mathsf{B}_{\mathrm{I}}=\mathsf{O}\left(\mathsf{N}^{\lambda/(\lambda-1)}\right)$

How does this compare with the bottleneck B_{max} induced by shortest path routing ?

Quantitative way of checking how "good" the shortest path protocol is.

S. Sreenivasan et al. (to be submitted)

SCALING OF BOTTLENECK INDUCED BY SHORTEST PATH ROUTING Bmax

S. Sreenivasan et al. (to be submitted)

OBTAINING THE SCALING OF THE INHERENT BOTTLENECK

Theorem^{*} : Number of links \mathcal{N}_{ℓ} between components x and y of a partition for a scale-free network:

 $\mathcal{H}_{\ell} \geq O(y)$, with Probability = 1 - o(1).

The largest that y can be is O(k);

Therefore, betweenness of M, is at most B = O(Nk).

The largest k is $O(N^{1/(\lambda-1)})$ and hence

The inherent bottleneck has betweenness $B_I = O(N^{\lambda/(\lambda-1)})$

*C. Gkantsidis et al. Proc. SIGMETRICS (2003)

- The inherent bottleneck in scale-free networks have betweeness $B_I = O(N^{\lambda/(\lambda-1)})$.
- For scale free networks, the bottleneck induced by shortest path routing scales far worse with N than the inherent bottleneck due to network topology.
- There may exist better routing protocols than shortest path routing.

Erdos-Renyi Random Graphs

B_{max} for a Scale-Free Network and an Erdös-Rényi Random Graph

.

