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2. Resilience of networks  to random failures ?
3. Structural bounds on communication in networks ?

Three questions addressed in thesis:

Application of statistical physics 
to random graph models of networks

1. Scaling of optimal path length on disordered networks ?

Broadbent and Hammersley (1959)

Barabasi and Albert (1999)

Erdos and Renyi  (1954)

Watts and Strogatz (1998)

Earlier work on networks:      



 Disordered Network:  A network on which every link i has an 
associated link weight wi  .

w = 3

w=4

w = 8 w = 10w =1

 Definitions 

Example:
wi  = Time to travel through a link



Optimal Path between a pair of nodes A and B ≡ The 
path between with the least total weight (sum of weights of 
links along the path)

Quantity of interest: 
  Average optimal path length ≡ lopt .

  (Average over an ensemble of random networks for fixed N.)
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 Definitions  

Motivation:
Activated processes on disordered landscapes.
Path allocation in routing problems.



Network Model Studied: Erdos-Renyi Random Graph 

Start with N nodes.

Connect L pairs randomly 
picked out of the N(N-1)/2  
possible pairs.

Resulting graph has N 
nodes and L links.

“degree”, k =2

 Definitions 

k = degree

P(k)
P(k) = e-z zk / k! 

z = 2L / N

z = Average degree
pdf of

degree
z



w = ear  , r ∈ [0,1]

a ≡ “disorder strength”

 P(w)  =  1/(aw)

The parameter “a” controls the heterogeneity in the link 
weights.

  The probability density function for the weights is :

 w  ∈ [1, ea]

Assignment of link weights (disorder):
 Definitions 

uniform



lopt (a,N)  ~  N                             Strong Disorder regime   ( a >> ax(N) )

 Previous results
Scaling of the average optimal path length lopt 
with network size N :

Two scaling regimes found* depending on the 
strength of the disorder “a”:

lopt(a,N) ~ ln N           Weak disorder regime   ( a << ax(N)) )
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how to explain these scaling laws and crossover? 

* L. A Braunstein, S. V. Buldyrev, R. Cohen, S. Havlin and H. E. Stanley. Phys. Rev. Lett. 91, 168701 (2003)



1. Explain the N1/3 scaling law for strong disorder regime.

2.  Derive the crossover disorder strength aX(N).

Our work on optimal paths in disordered networks

Questions asked :

3.  Obtain a general scaling ansatz for the optimal 
path length .



The strong disorder limit
Suppose weights on the links are ordered 
according to their magnitudes:

w1 < w2 < w3 < ...< wL

Consider the ratio of two successive weights :

wk 

wk-1
=  ea Δr  where , on avg. , Δr  ≅ 1/L = 2/<k>N

For fixed N, L, as a→∞ , one link dominates with high probability,

wk > wk-1 + wk-2  + ... w1

a→∞  ≡  strong disorder limit.



wk > wk-1 + wk-2  + ... w1 When
The maximal weight wmax along a path P  dominates the 
sum of the weights on the path:

Optimal path between A and B is the Min-Max path ≡ path with  
the lowest maximal weight along the path. 
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Obtaining optimal path in strong disorder limit

“Bombing”
algorithm



MST ≡  Tree on the original network with the minimum total link weight

The Minimum Spanning Tree
Minimum Spanning tree (MST) ≡ Union of optimal paths for all choices of (A,B) 
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The average number of links between two nodes 
on the MST =  average length of the Min-Max Path. 

 Average Min-Max path length denoted as 

 l∞(N) ≡ Lim   lopt(a,N).
a➝∞



l∞ 

Since the Bombing algorithm yields the MST, the N1/3 scaling law 
arises due to optimal paths which lie on the Minimum Spanning Tree.

When a  >> aX     (Strong Disorder regime),

The N1/3 scaling law (for strong disorder) 

Test of the bombing algorithm

x    x   brute force 
bombing algorithm



No. of nodes in 
largest 

connected 
component

p =p = 0 1pc 
Percolation Threshold

S

S≡O(N)

Percolation process ≡ Links on the network are “alive” with probability p 

Percolation process:
1) Assign a random number r ∈ [0,1] uniformly to links on the network
2) “Bomb” all links with r > p.  

“Bombing” algorithm is analogous to a percolation process.

Connection of the Bombing Algorithm to Percolation

          “Bombing” algorithm to find the optimal  path:

2) “Bomb” links in descending order of weight assigned maintaining, 
connectivity.

1) Order the links by their weights (r ∈ [0,1]) assigned.

S≡O(lnN)

1



Clusters at pc are trees for random graphs * 

Giant component  
(GC)

S  ~ N2/3 

Connection of MST to Percolation
At the percolation threshold pc , there are O(N) clusters:

* S. Janson, D. E. Knuth, T. Luczek and B. Pittel, Rand. Struct. Alg. 4, 233 (1993),

finite clusters (O(ln N))

E.Ben -Naim and P.  Krapivsky, Phys. Rev E.  71, 026129 (2005). 

r >pc

MST formed by the connecting percolation clusters with links with r > pc



GC

Ttx

Deriving  l∞ ~ N1/3

Typical path length within a percolation cluster of size  s :  ls ~ s1/2 

Since giant component size (O(N2/3)) >>  size of finite clusters (O(ln N)), 
path length within GC provides the dominant contribution l∞.

O(ln N)

O(N2/3)

∴  l∞ ~ S1/2 ~ (N2/3)1/2 = N1/3  

A
B

l∞(AB) ≈ l1+ lGC+ l2 
l1

lGC

l2

finite clusters



Weight of the added link ≤ Weight of subpath within GC

Giant 
component  

(GC)
A

B

r > pc
 subpath

A “shortcut” link with r > pc  can be used if :

lopt (a,N)  ~  N1/3                             Strong Disorder regime   ( a >> ax(N) )

lopt(a,N)   ~  ln N                 Weak disorder regime   ( a << ax(N)) )

As disorder strength “a” is decreased,

Deriving ax(N)



Crossover to weak disorder

where   r*  ≈   pc   +   ln( l∞ / apc)
a

Average weight of a typical path within the GC :

∑   exp(akpc / l∞) = exp(a r*)
k=1

l∞ r*r (> pc)

Path on the MST
For a shortcut to be feasible:

r*  =  r 

⇒ l∞ >> apc

 

Assume that any path in the GC has r ∈ [0,pc], uniform:

Then, for a typical path of length l∞, the kth largest random number 
has value (on average):  rk  = kpc / l∞

⇒ for a << ax = l∞/pc   the optimal path deviates from the MST



∴ We expect : 

lopt (a,N)  ~  N1/3                        for  a >> ax(N)  

We therefore propose a scaling ansatz for lopt(a,N) :

lopt(a,N) ~ l∞(N) F (a/ax(N))

where F(u) = -u ln u
=  const

u >> 1
u <<1

Scaling ansatz for lopt (a,N) :

lopt(a,N) ~ ln N               for  a << ax(N) = l∞(N)/pc
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Effect of Disorder Strength on Optimal Paths in Complex Networks

The scaling ansatz for !opt becomes:

!opt(a) ∼ NνoptF
“

N

a1/νopt

”
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June 2004 Boston University

lopt(a,N) ~ l∞(N) F (a/ax)

lopt(a,N)

S. Sreenivasan, T. Kalisky, L.A. Braunstein, S.V. Buldyrev, S. Havlin and H. E. Stanley, PRE 70, 046133 (2004)

F(u) = -u ln u
=  const

u >> 1
u <<1

l∞

 ax /a =  l∞ /apc  

Test of the scaling ansatz



Further extensions
Results extended to general distributions. 

Current flow paths on strongly disordered random resistor networks

Y. Chen, E. Lopez, S. Havlin and H. E. Stanley , PRL 96 068702 (2006) 

Z. Wu, E. Lopez, S. V. Buldyrev, L. A. Braunstein, S. Havlin and H. E. Stanley, PRE 045101(R) (2005)

P. Van Mieghem and S. Van Langen,  PRE 71 056113 (2005) 

Summary

 We establish a relationship between the MST and clusters at the 
percolation threshold of the graph.

(i)

(ii)

We find the scaling of  l∞(N) , ax(N) and a scaling ansatz 

for lopt(a,N) and test it by simulations.

(i)

(ii)
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