Current Flow in Random Resistor Networks:

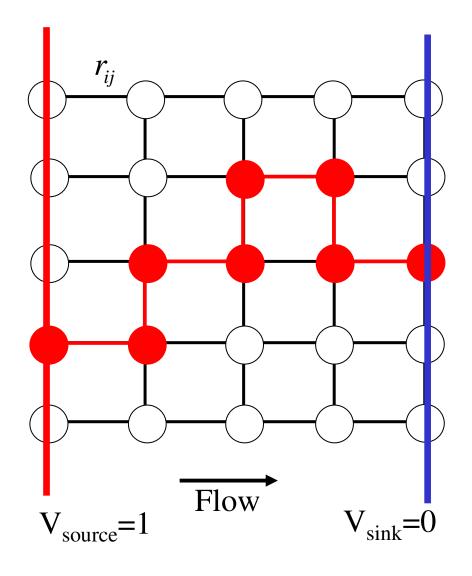
The Role of Percolation in Weak and Strong Disorder

Zhenhua Wu Advisor: H. Eugene Stanley Collaborators: Eduardo López Sergey V. Buldyrev Lidia A. Braunstein Shlomo Havlin

What are the questions?

- What are the properties of current flow on a disordered lattice?
- Is there any specific path which dominates current flow?
- How to characterize the dominant current flow path?

Tracer flow on bond disordered media



- Tracers (electrons, information packet...) flow in a *disordered* network with specific *structure*, according to the *rules* they obey.
- ex. *Resistor Lattice*, r_{ij} satisfies *some disorder distribution*.
- current flow obeys the *Kirchhoff law*.

Flow path

Disorder Distribution is Exponential

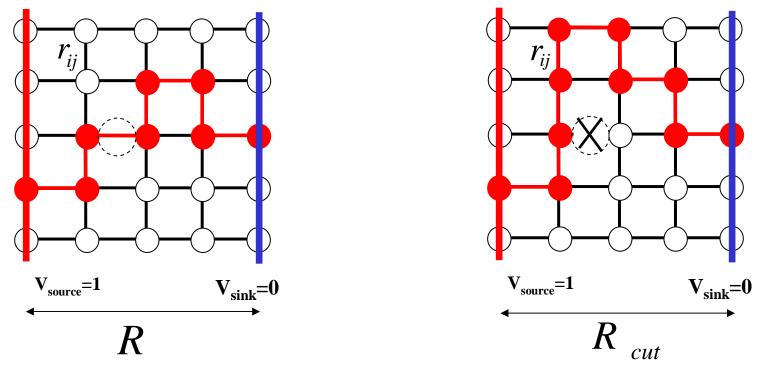
 $r_{ij} = e^{ax_{ij}} \qquad P(r_{ij}) = \frac{1}{ar_{ij}}$ $x_{ij} \in [0,1] \qquad r_{ij} \in [1, e^{a}]$ a : disorder strength, controls the broadness of the distribution.

Experimental Realizations:

- Hopping conductivity of quenched condensed granular Ni thin films. ^[1]
- The temperature dependence of hopping conductivity in amorphous material, where $a \sim 1/T$.^[2]

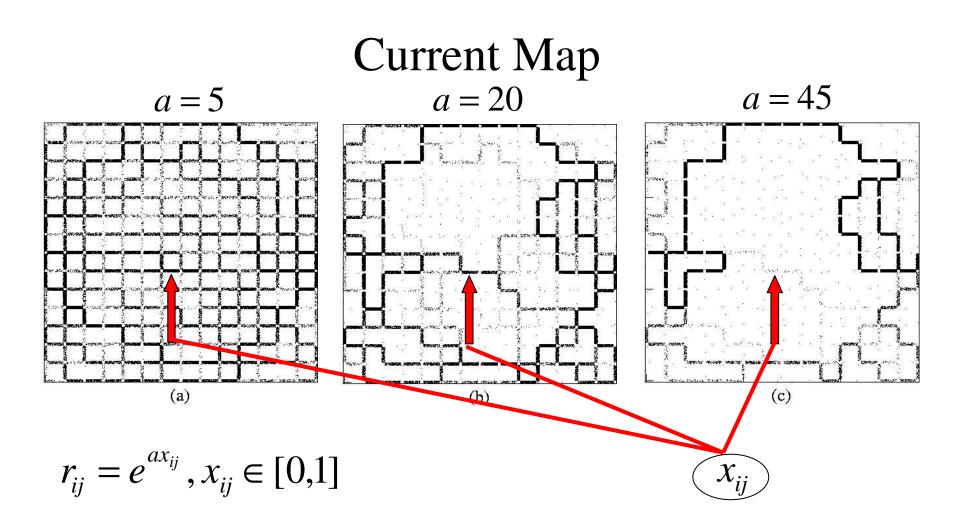
[1]. Y. M. Strelniker et. al, Phys. Rev. E, 69, 065105(R) (2004)
[2]. J. Bernasconi, Phys. Rev. B, 7, 2252 (1973)

"One dominates all"^[3]



When one bond, which has the maximal current, was cut, the resistance of whole system increases dramatically.

[3]. Y. M. Strelniker et. al, Phys. Rev. E, **69**, 065105(R) (2004)

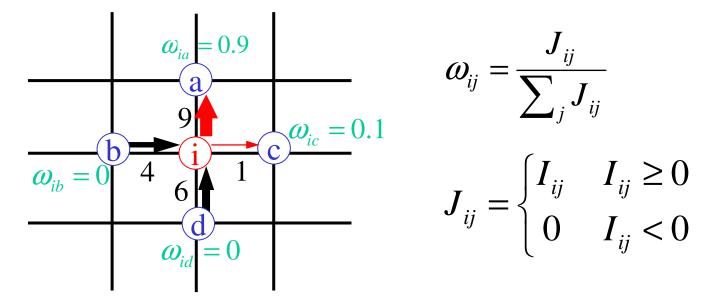


As disorder strength *a* increase, the set of paths responsible for carrying current changes (more localized).

Goal: Find Current Paths ("tracer flow")

Solution: *Particle launching algorithm*: tracers flow^[4]

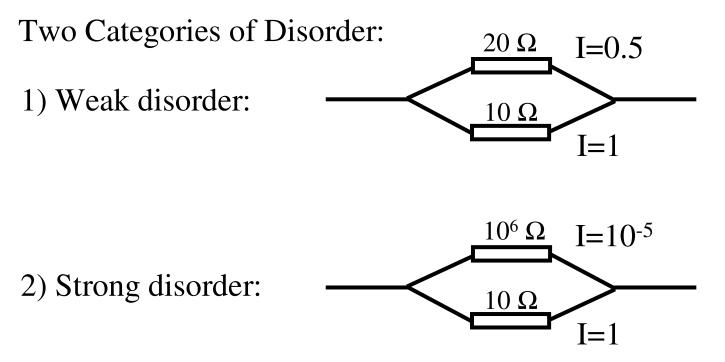
- Step 1: calculate current I_{ii} (Solving Kirchhoff equation).
- Step 2: calculate flow probability: ω_{ij}



Convective tracers flow accurately according to the actual current.

[4]. E. Lopez et. al, Phys. Rev. E, 67, 056314 (2003)

What decision tracers will make?

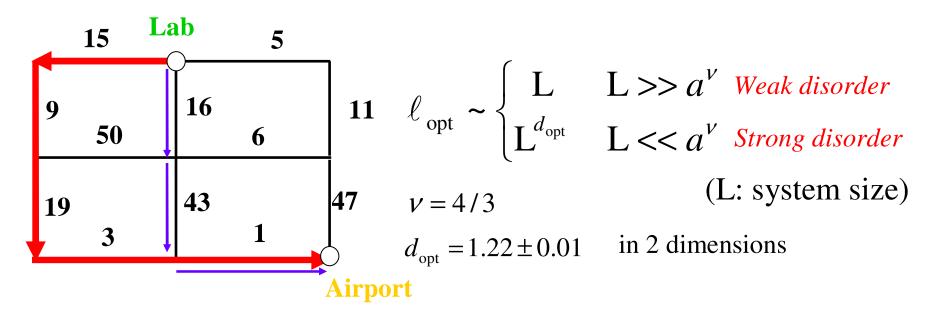


Tracers will ALWAYS choose the minimum total resistance path in the strong disorder limit $(a \rightarrow \infty)$.

Motivates concept of *Optimal Path*.

Optimal Path

<u>Def</u>: Optimal path is the path that minimizes the total cost $(ex: \sum_{i} e^{ax_i})$ between any two points. ^[5-8]

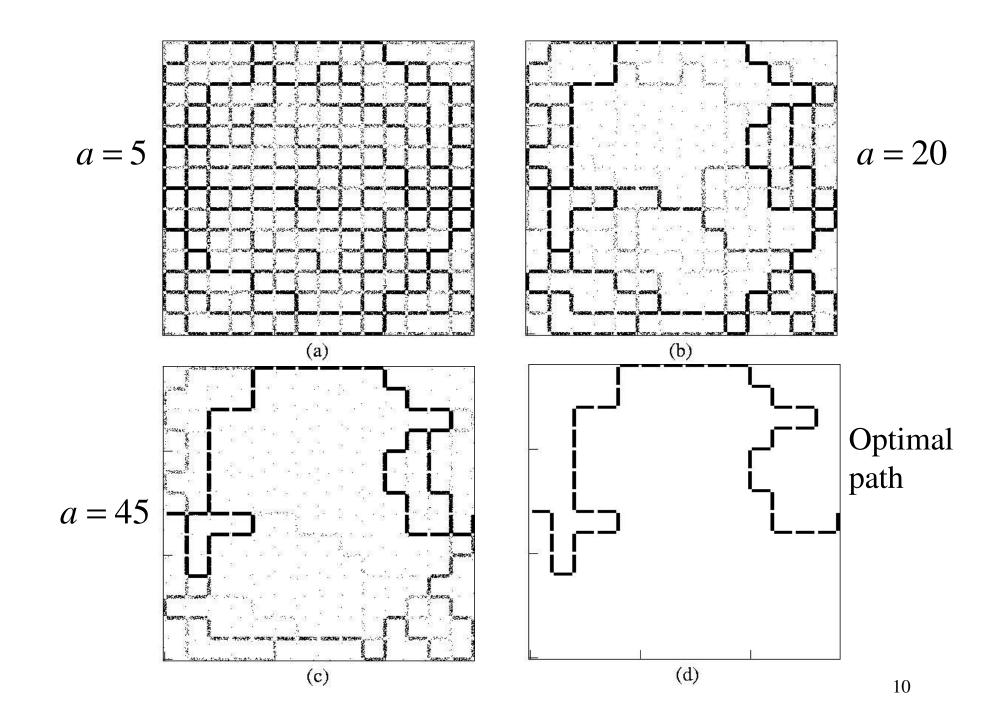


[5]. Cieplak, et al, Phys. Rev. Lett. 72, 2320 (1004); 76, 3754 (1996).

[6] Sameet, et al. Physica A, **346**, 174-182 (2005).

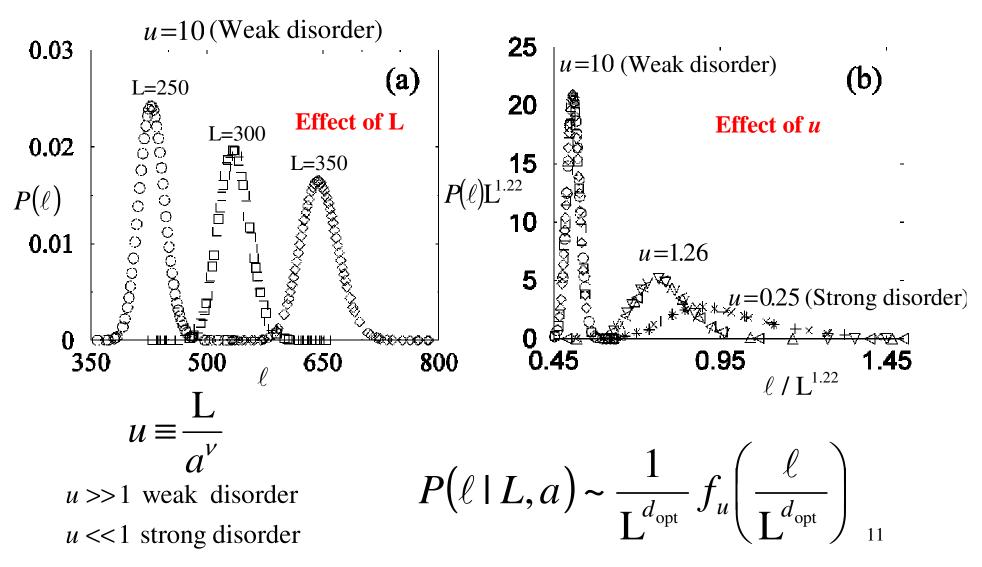
[7]. M. Porto, et. al, Phys. Rev. E 60, 2448 (1999).

[8]. L. A. Braunstein, et al, Phys. Rev. Lett. 91, 168701 (2003)



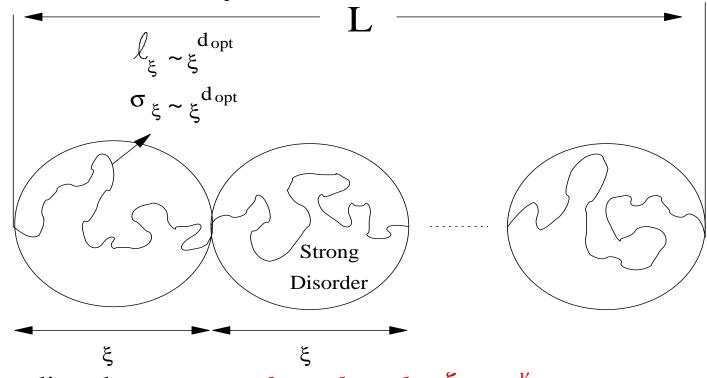
Results

Distribution of the length of tracer paths



Results

Prediction: Physics of intermediate disorder



Strong disorder *connectedness length*: $\xi \sim a^{\nu}$

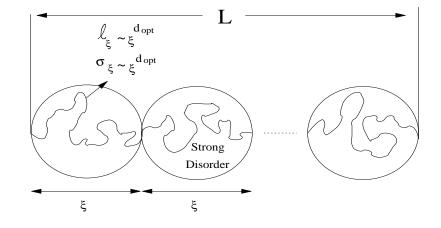
Weak disorder system with system size L is composed of:

$$u \equiv \frac{L}{a^{\nu}} \sim \frac{L}{\xi}$$
 blobs of strong disorder subsystems.

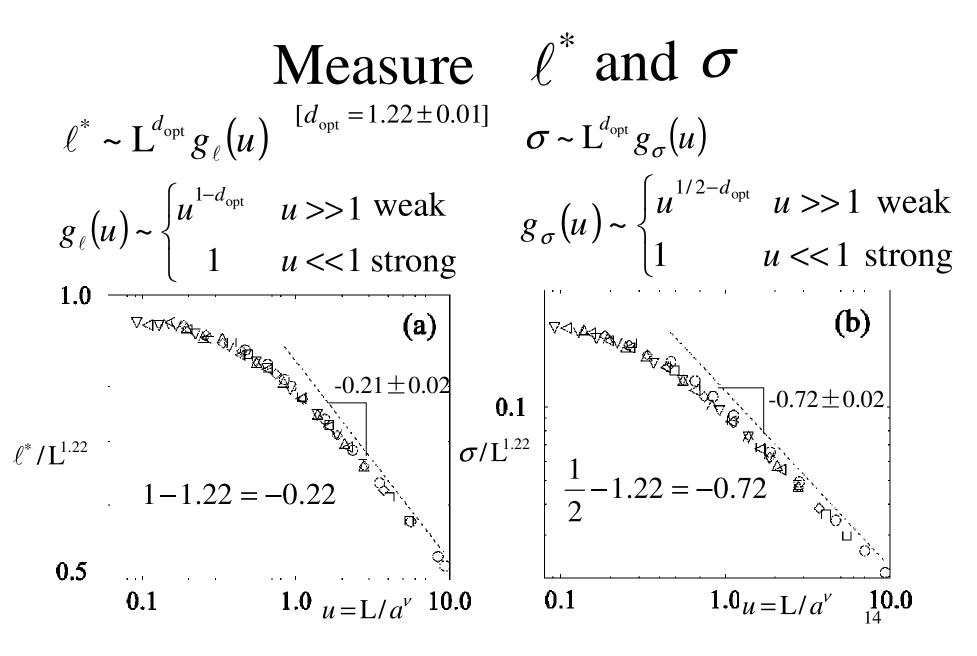
Prediction: intermediate disorder

 ℓ^* : the maximum of $P(\ell \mid L, a)$

 σ : the standard deviation of ℓ



$$\ell^* \sim \overline{\ell} \sim u \xi^{d_{\text{opt}}} = L^{d_{\text{opt}}} u^{1-d_{\text{opt}}}$$
$$\sigma \sim \sqrt{u} \xi^{d_{\text{opt}}} = L^{d_{\text{opt}}} u^{1/2-d_{\text{opt}}} \qquad u \equiv \frac{L}{a^{\nu}}$$



Summary

- Tracer path for *exponential disorder* satisfies similar *scaling* as the optimal path, with the same exponents.
- The ratio $u \equiv L/a^{\nu}$ fully determines the distribution of ℓ for all ranges of value u.
- In weak disorder, there exists a connectedness length $\xi \sim a^{\nu}$, where for length scale of the path below ξ , strong disorder and critical percolation exist.