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Abstract. Real systems are usually composed by units or nodes whose activity 
can be interrupted and restored intermittently due to complex interactions not 
only with the environment, but also with the same system. Majdandžić et al 
(2014 Nat. Phys. 10 34) proposed a model to study systems in which active 
nodes fail and recover spontaneously in a complex network and found that in 
the steady state the density of active nodes can exhibit an abrupt transition 
and hysteresis depending on the values of the parameters. Here we investigate 
a model of recovery-failure from a dynamical point of view. Using an effective 
degree approach we find that the systems can exhibit a temporal sharp decrease 
in the fraction of active nodes. Moreover we show that, depending on the values 
of the parameters, the fraction of active nodes has an oscillatory regime which 
we explain as a competition between different failure processes. We also find 
that in the non-oscillatory regime, the critical fraction of active nodes presents 
a discontinuous drop which can be related to a ‘targeted’ k-core percolation 
process. Finally, using mean field equations we analyze the space of parameters 
at which hysteresis and oscillatory regimes can be found.

Keywords: nonlinear dynamics, percolation problems, random graphs, networks

L D Valdez et al

Failure-recovery model with competition between failures in complex networks: a dynamical approach

Printed in the UK

093402

JSMTC6

© 2016 IOP Publishing Ltd and SISSA Medialab srl

2016

2016

J. Stat. Mech.

JSTAT

1742-5468

10.1088/1742-5468/2016/9/093402

PAPER: Interdisciplinary statistical mechanics

9

Journal of Statistical Mechanics: Theory and Experiment

© 2016 IOP Publishing Ltd and SISSA Medialab srl

ournal of Statistical Mechanics:J Theory and Experiment

IOP

1742-5468/16/093402+24$33.00

mailto:ldvaldes@mdp.edu.ar
http://stacks.iop.org/JSTAT/2016/093402
http://dx.doi.org/10.1088/1742-5468/2016/09/093402
http://dx.doi.org/10.1038/nphys2819
http://dx.doi.org/10.1038/nphys2819
http://crossmark.crossref.org/dialog/?doi=10.1088/1742-5468/2016/9/093402&domain=pdf&date_stamp=2016-09-12
publisher-id
doi


Failure-recovery model with competition between failures in complex networks: a dynamical approach

2doi:10.1088/1742-5468/2016/09/093402

J. S
tat. M

ech. (2016) 093402

1. Introduction

In nature and social networks, node aging effects and external forces introduce pertur-
bations on these systems which affect their functions or even can trigger catastrophic 
cascade of failures. However many of these systems are able to develop different mech-
anisms to recover their functionality. For instance, it was recently shown that rat 
brains under anesthesia pass through discrete metastable states of activity which allows 
to recover from a state of induced comma to a full consciousness state in a physiologi-
cal time [1]. In protein network regulation when, for example the DNA is damaged, 
a specific protein is activated [2]. This produces the arrest of the cell division cycle 
which prevents the proliferation of cells containing damaged DNA (tumor formation). 
Then, a biochemical processes involved in DNA repair is initiated. Once this task is 
completed successfully, the cell resumes its progression so that cell division can take 
place. If repairing is not possible due to excessive damage, the specific protein leads to 
apoptosis, i.e. programmed cell death.
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Recently Majdandžić et al [3] proposed a model to study systems in which nodes 
fail and recover spontaneously in a complex network. In their model, a node can be 
in one of the following two states: active or inactive. In particular, nodes can be inac-
tive due to: (i) internal failure (independently of the states of their neighbors) or (ii) 
external failure when a fraction of their neighbors are inactive, i.e. there is an interac-
tion between nodes and their neighbors. They studied numerically and theoretically, 
in a mean field approach, the steady state of the process and found that the density 
of active nodes A can exhibits an abrupt transition and hysteresis, which mimics the 
behavior observed in different biological and economical systems [3].

The model proposed by Majdandžić et al [3] can be related to an epidemic model, 
since active nodes are equivalent to susceptible nodes, i.e. non-infected individuals; and 
inactive nodes are equivalent to infected ones. As a consequence, the same tools imple-
mented in the field of epidemiology can be extended to models where nodes recover and 
fail spontaneously as in [3].

In this manuscript we propose a dynamical model of activation and spontaneous 
recovery and use the framework from the epidemiology field to describe the dynamics of 
the process. The study of dynamical processes in complex systems is a very important 
area of research since it allows understanding the role of the nonlinearities involved in 
the processes. There are different theoretical approaches to study the evolution of a dis-
ease spreading. One of the most detailed framework is the Markovian equations applied 
to complex networks, to study the evolution of the spread of an epidemic [4]. In this 
approach, it is necessary to use an order of N differential equations, where N is the size 
of the network. Another theoretical tool is the effective degree approach [5], in which 
the compartments are disaggregated by the states of the nodes of a network (infected 
or non-infected), and by the number of its neighbors in each state. In particular, in 
epidemic models such as the susceptible-infected-recovered (SIR) and the susceptible-
infected-susceptible (SIS)—see [5]—the number of equations used to describe the evo-
lution of the density of individuals in different compartments is of the order O kmax

3( ) and 
O kmax

2( ) respectively, where kmax is the maximum degree that a node can have. In [5] it 
was shown that this approach gives a good agreement between theory and simulations 
for the SIR and SIS models. Finally, one of the simplest tools to study epidemic process 
are the equations based on the law of mass action, or simply, mean field (MF) equa-
tions [6] which have very little or no information about the topology of the network 
and disregard any correlation between the states of the nodes. Although sometimes, 
there is not a good agreement between the theoretical results and the simulations on 
complex networks, this approach: (i) gives a qualitatively description of the process, 
(ii) allows to find analytically the behavior of relevant magnitudes, (iii) allows to study 
the stability of the fixed points in MF easily. For interested readers a more detailed 
description of the tools applied on epidemic models can be found in [7–11] and refer-
ences therein.

In this work we apply the degree based framework, used in epidemic processes 
that spread in complex networks, to describe the evolution of the states on complex 
networks where active nodes overcome internal, external failures and recovery. In our 
failure-recovery model active nodes can fail by random internal failures at a rate p 
and recover from this kind of failure at a rate Iγ . Active nodes can also fail at a rate 
r due to lack of support of their neighborhood and recover at a rate Eγ . Unlike the 

http://dx.doi.org/10.1088/1742-5468/2016/09/093402
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model presented in [3], here we distinguish between inactive nodes failed by internal 
and external failures that dynamically compete to ‘capture’ active nodes. Our model 
mimics some biological systems such as neural networks, where some nodes can exhibit 
inhibitory or excitatory functions [12].

We find that depending on the values of the parameters, the system exhibits regimes 
with hysteresis and oscillations. We discuss the relation between our model in the 
steady state and k-core percolation. Finally, using a MF approach we study the phase 
diagram of the fraction of active nodes as a function of the parameters, and we show 
that only for I Eγ γ<  the system is able to sustain oscillations.

This paper is organized as following: in section 2 we present our model and the 
evolution equations based on the effective degree approach. In section 3.1 we show our 
dynamical results and in section 3.2 we present the results in the steady state. In sec-
tion 4 we study the stability of the solutions and construct the Lyapunov function in 
the mean field approach. In section 5 we present our conclusions.

2. Model

In our failure-recovery model, a node can be in one of the following three compartment 
states:

 • Active (A): nodes which are not failed or damaged,

 • Inactive due to internal failure (I ): A nodes that fail at a rate p independently of 
the states of their neighbors. These nodes recover (i.e become active) at a rate Iγ ,

 • Inactive due to external failure (E ): A nodes having m or less active neighbors 
which fail at a rate r due to lack of support from their neighbors. These nodes 
recover at a rate Eγ .

In figure 1 we show a schematic of the rules of our spontaneous recovery model.
The particular case of p 0I Eγ γ= = =  is the special case of a k-core percolation pro-

cess [13–16] in which nodes go through an irreversible transition from state A to E. In 
the ‘random’ k-core percolation, after randomly removing a fraction 1  −  q of nodes, a 
cascade is triggered and all the nodes having m or less non-removed or living neighbors, 
are removed. In the steady state, there is a giant component (GC) composed by nodes 
with more than m living neighbors, which we call a ‘compact’ sub-graph. It was shown 
that the final number of living nodes in this process can exhibit a first order phase 
transition at a critical initial failure 1  −  qc where qc, is the initial critical fraction of liv-
ing nodes in the cascade. In appendix B.1 we show the equations for the steady state 
of the ‘random’ k-core percolation. We will also discuss later the relation between our 
model and k-core percolation.

The main theoretical approach that we use in this manuscript to describe our model 
is the effective degree approach [5] that will be compared with the stochastic simula-
tions. However, in order to study qualitatively the phase diagrams and the stability of 
the solutions, we will use mean field equations obtained from the degree based approach 
in which the correlations between the states of nodes and their neighbors are disregarded.

http://dx.doi.org/10.1088/1742-5468/2016/09/093402
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2.1. Effective degree approach and mean field equations

For the effective degree approach, first introduced by Lindsquit et al [5], the compart-
ments are disaggregated by the states of the nodes of a network (A, I , E ), and by 
the number of its neighbors in each state. We denote by A k k k, ,A I E( ) [and similarly 
I k k k, ,A I E( ) and E k k k, ,A I E( )] the density of active nodes (internal inactive and exter-
nal inactive) with kA, kI and kE neighbors in state A, I and E, respectively; where 
k k k kA I E+ + =  is the degree of a node. In our model, the flow into and outside these 
compartments are due to the change on the state of the nodes and their neighbors. The 
evolution equations for the states in our failure-recovery model are given by

A k k k

t
I k k k E k k k

rA k k k m k pA k k k

k A k k k k A k k k

k A k k k k A k k k
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d
, , , ,

, , , ,
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(2)

Figure 1. Schematic representation of the model. Light blue, red and orange nodes 
represent the active (A), inactive due to internal failure (I ) and inactive due 
to external failure (E ), respectively. Active nodes can fail internally with rate p 
independently of the number of active neighbors (kA). Active nodes with k mA ⩽  
can also fail externally with rate r due to the lack of support of their neighbors. 
In the schematic we use m  =  2. The E nodes become active at rate Eγ  and the I 
ones at rate Iγ .
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(3)

where x( )Θ  is the Heaviside distribution. In these equations k k k k kA I Emin max⩽ ⩽+ + , 
where kmin and kmax are the maximum and minimum degree of the degree distribution 
P(k). Here, P(k) represents the fraction of nodes with k neighbors, i.e. with degree k.

Equation (1) (and similarly equations (2) and (3)) represents the evolution of the den-
sity of active nodes (I and E) with kA, kE and kI neighbors in states A, I , E, respectively 
(or with neighborhood k k k, ,A E I( )). Notice that the information of the degree distribution 
P(k) is encoded in the initial condition of the system of equations (1)–(3). For example, 
for the initial condition in which all nodes are active, A k k k k P k, 0, 0A I E( ) ( )= = = = .

In the r.h.s equation (1) the term:

 • I k k k, ,I A I E( )γ  represents the transition from a node in state I with a neighbor-
hood k k k, ,A I E( ), to state A, due to the recovery of these inactive nodes,

 • E k k k, ,E A I E( )γ  corresponds to the transition from state E to A due to recovery at 
rate Eγ ,

 • ( ) ( )Θ −r A k k k m k, ,A I E A  depicts the density of active nodes with k mA ⩽  that fail 
externally at a rate r,

 • p A k k k, ,A I E( ) represents the transition from nodes with state A and neighborhood 
k k k, ,A I E( ), to nodes with state I at a rate p due to internal failure,

 • p k A k k k k A k k k1 1, 1, , ,A A I E A A I E[( ) ( ) ( )]+ + − −  represents the transition, in which 
neighbors in state A becomes I ,

 • k A k k k k A k k k1 1, , 1 , ,E E A I E E A I E[( ) ( ) ( )]γ + − + −  is the transition in which neigh-
bors in state E become active at a rate Eγ ,

 • k A k k k k A k k k1 1, 1, , ,I I A I E I A I E[( ) ( ) ( )]γ + − + −  represents the transition from 
neighbors in state I to A at a rate Iγ , and finally,

 • r W k A k k k k A k k k1 1, , 1 , ,A A A I E A A I E[( ) ( ) ( )]+ + − −  represents the density of active 
nodes whose neighbors in state A become E.

Here WA, (WI and WE) represents the probability that an active neighbor (with k mA ⩽ ) 
is connected to a node in state A, (I and E ) (see figure 2). Notice that the last four 
terms depict the transitions of a node caused by its neighbors and not by changes in 
its own state.

In table 1 we show the flow into and outside the compartment A k k k, ,A I E( ) (see 
equation (1)).

http://dx.doi.org/10.1088/1742-5468/2016/09/093402
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The interpretation of each term of equations (2) and (3) is straightforward. Note that 
the last relation in table 1 represents an effective dynamical rate of transition at which 
active neighbors of an active node fail externally, which is proportional to WA, that is, 
the ratio between the mean number of active neighbors of an active node that can fail 
and the total mean number of active neighbors:

W
k A k k k

k A k k k

, ,

, ,
.A

k
m

k
k

k
k

A A I E

k
k

k
k

k
k

A A I E

0 0 0

0 0 0

A I E

A I E

max max

max max max

( )
( )

=
∑ ∑ ∑

∑ ∑ ∑
= = =

= = =
 (4)

Similarly WI, WE are given by

W
k A k k k

k A k k k

W
k A k k k

k A k k k
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, ,
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, ,

, ,
.

I
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k
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k
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k
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k
k
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k

k
k

E A I E

0 0 0

0 0 0

0 0 0

0 0 0

A I E
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max max
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( )
( )
( )

=
∑ ∑ ∑

∑ ∑ ∑

=
∑ ∑ ∑

∑ ∑ ∑

= = =

= = =

= = =

= = =

From the system of equations (1)–(3) the density of nodes in states A, I and E, that 
we denote by A, I and E respectively, are given by,

A A k k k, , ,
k

k

k

k

k

k

A I E
0 0 0A I E

max max max

( )∑ ∑ ∑≡
= = =

 (5)

I I k k k, , ,
k

k

k

k

k

k

A I E
0 0 0A I E

max max max

( )∑ ∑ ∑≡
= = =

 (6)

(a) (b) (c)

Figure 2. Schematic representation of the terms WA (a), WI (b) and WE (c) for 
m  =  2. The colors of the nodes represent the same as in figure 1. WA represents 
the fraction of edges connecting two active nodes, in which one of them has k mA ⩽ . 
Similarly, WI (WE) represents the fraction of edges connecting nodes in state I (E) 
with nodes in state A with k mA ⩽ .

http://dx.doi.org/10.1088/1742-5468/2016/09/093402
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E E k k k, , .
k

k

k

k

k

k

A I E
0 0 0A I E

max max max

( )∑ ∑ ∑≡
= = =

 (7)

The agreement between equations (1)–(3) and the simulations improves as the 
mean connectivity k kP k⟨ ⟩ ( )= ∑  increases. Therefore, in order to compare the effective 
degree equations with the stochastic model, in the following sections we present the 
results based on random regular (RR) networks, where all the nodes have the same 
degree z  =  32, and in non-regular networks constructed using the configurational 
model [17] with k 32⟨ ⟩ = . For networks with a smaller mean connectivity ( k 10⟨ ⟩ ≈ ) we 
show only the simulations. In the stochastic model we use N  =  106 and the Gillespie’s 
algorithm.

3. Results

3.1. Time evolution

We compute the density of nodes in state A, I and E in the steady state of our failure-
recovery model as a function of p p1 exp I( / )γ= − −∗  (see [3]), which is a convenient 
parameter to show our numerical results since p 0, 1[ ]∈∗  (p∗  =  0 for p  =  0 and p∗  =  1 
for p = ∞). Additionally, for small values of p (p Iγ≪ ), p∗ corresponds to the steady 
density of nodes in state I of our model when r  =  0, i.e. when there is no state E, 
and nodes become A and I intermittently without any interaction between them (see 
appendix A).

In figure 3, we show the evolution of the density of active nodes (see equation (5)) 
for RR network, obtained from the simulation and from equations (1)–(3) for 0.01Iγ = , 

1Eγ = , r  =  5, p∗  =  0.40 and m  =  8 for two different initial conditions, A  =  1 in (a) and 
I  =  1 in (b). Notice that A  +  E  +  I  =  1.

Table 1. Transitions involved in equation (1).
Transition Rate

A k k k E k k k, , , ,A I E A I E( ) → ( ) −r

A k k k I k k k, , , ,A I E A I E( ) → ( ) −p

A k k k A k k k, , 1, , 1A I E A I E( ) → ( )+ − kE Eγ−
A k k k A k k k, , 1, 1,A I E A I E( ) → ( )+ − kI Iγ−
A k k k A k k k, , 1, 1,A I E A I E( ) → ( )− + p kA−
A k k k A k k k, , 1, , 1A I E A I E( ) → ( )− + r W kA A−
I k k k A k k k, , , ,A I E A I E( ) → ( ) Iγ
E k k k A k k k, , , ,A I E A I E( ) → ( ) Eγ
A k k k A k k k1, , 1 , ,A I E A I E( ) → ( )− + k 1E E( )γ +
A k k k A k k k1, 1, , ,A I E A I E( ) → ( )− + k 1I I( )γ +
A k k k A k k k1, 1, , ,A I E A I E( ) → ( )+ − p k 1A( )+
A k k k A k k k1, , 1 , ,A I E A I E( ) → ( )+ − r W k 1A A( )+

http://dx.doi.org/10.1088/1742-5468/2016/09/093402
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From figure 3 we can see that the theoretical model is in well agreement with the 
simulation. In figure 3(b) we can see that there is a slightly difference between the simu-
lations and the theory on the time at which the density of active nodes rises sharply. 
This difference can be explained by stochastic effects similarly than the one found in 
epidemic models [18] when the initial condition consists in a few infected nodes. For 
this case, the time at which the density of infected individuals grows sharply varies for 
different realizations [18]. For the parameters used in figure 3, the system reaches a 
steady state, however, we will show that for a specific region of parameters the system 
exhibits an oscillatory behavior, similarly to the ones found in some epidemic models 
[19–21] and in a model of neural networks [12]. In our model, these oscillations are a 
consequence of a competition between inactive internal nodes and inactive external 
nodes, with the aim of transforming the living nodes to their own state, as we will 
explain below.

In figure 4(a), we plot the theoretical results for the evolution of the density of 
active nodes for the same parameters of figure 3(a), but for r  =  3, instead of the value 
r  =  5 used in figure 3 for different values of p∗. From the figure we can see that the 
system exhibits oscillatory behavior in the range p0.83 0.88⩽ ⩽∗ .

The oscillatory phase can be explained as a competition between internal and exter-
nal inactive nodes to turn active nodes into states I and E, respectively. The dynamic 
of this competition is shown in figure 4(b) in which we identify qualitatively three con-
secutive regimes (i)–(iii):

 (i) Initially, in this interval all nodes are active and they can only fail internally 
because each active node has kA  >  m neighbors. Therefore A goes down and I 
rises while E remains near to zero.

 (ii) In this stage as I increases, the fraction of nodes in state E raises faster than 
in the previous stage since there is an increasing number of active nodes with 
k mA ⩽  neighbors. As these nodes in state A become E, there are less available 
active nodes that can make a transition to I states, which is reflected in a slower 
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Figure 3. Temporal evolution of the density of active nodes for RR networks with 
z  =  32 for 0.01Iγ = , 1Eγ = , r  =  5, m  =  8, p∗  =  0.40 for two initial conditions: (a) 
A  =  1 and (b) I  =  1. The theoretical solutions (black) are obtained from the degree 
effective equations (1)–(3) and the simulation results (colored lines) are the results 
of 100 different network realizations with N  =  106.
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increasing of I, until I reaches a maximum. Therefore in this stage, in the ‘com-
petition’ between nodes in state E and I to turn active nodes into a new state, 
the external inactive nodes ‘win’.

 (iii) In this regime, the fraction of I nodes decreases while the fraction of the E ones is 
still growing. However since the external inactive nodes can recover more quickly 
than the internal inactive nodes ( E Iγ γ> ) the probability that k mA ⩽  decreases. 
This implies that finally E reaches a maximum and then decreases very quickly, 
leaving active nodes available to fail internally and hence I grows, repeating 
again the behavior of stage (ii).

In the inset of figure 4(b) we show, as an example, the results of the evolution of A, 
I and E on a simplex triangle for different stochastic realizations with p∗  =  0.85, which 
are in well agreement with the theoretical result. In section 4 we will study qualita-
tively this oscillatory behavior through a stability analysis and show how this regime 
depends on the parameters, using a mean field (MF) approach.

3.2. Steady state

Another important feature of our dynamical model is the behavior of A, I and E in the 
steady state (the non oscillatory region). In figure 5, we show the density of nodes in 
state A, I and E as a function of p p1 exp I( / )γ= − −∗  in the steady state for a random 
regular network. These curves are obtained from the evolution equations (1)–(3) for 

0.01Iγ = , 1Eγ = , m  =  8 for different values of r and initial condition A  =  1. For r  =  1 
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Figure 4. For RR networks with 0.01Iγ = , 1Eγ = , r  =  3, m  =  8: (a) density of 
active nodes as a function of time obtained from the effective degree approach 
for p p1 exp I( / )γ= − −∗  from 0.00 (top) to 0.99 (bottom) with p 10 2δ =∗ − ; and (b): 
temporal evolution of the density A (black), I (red) and E (green) with p 0.018 97=  
(p∗  =  0.85) obtained from the effective degree approach. The intervals of time (i), 
(ii) and (iii) correspond qualitatively to different regimes due to the competition 
between nodes in state E and I (explained in the text). In the inset we show the 
phase portrait in a triangular simplex obtained from the main plot (black) and we 
compare the results with four stochastic network realizations (colored lines) with 
N  =  106 nodes.
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(figure 5(a)), we can see that as the effective rate of internal failure p∗ increases, as 
expected, the density of nodes in state I increases while for nodes in state A decreases.

In figure 5(b) we show the same curves as in figure 5(a) for r  =  5. As p∗ increases 
from p∗  =  0 the curves behaves similar to the case r  =  1. However, at a certain value 
p 0.81≈∗ , denoted as the threshold pc

∗, we can see a sharp change in the curves, like in 
a first order phase transition, in which the density of nodes in states A and I abruptly 
goes down, while the density of E grows sharply. As p∗ increases, for p pc>∗ ∗ the density 
of nodes in state A changes slower than for p pc<∗ ∗. This implies that the variation in 
the density of nodes in state E is transferred to the density of nodes in state I , i.e. I 
nodes win over E for these parameters.

In order to assess the accuracy of the theoretical approach, in figure 6 we compare 
the theoretical results with the stochastic simulations for initial conditions A  =  1 and 
I  =  1. We can see a good agreement between the effective degree approach and the 
simulations. For r  =  5 (see figure 6(a)) we obtain theoretically a hysteresis region in the 
density of active nodes between p∗  =  0.45 and p∗  =  0.81. In section 4 we will also study 
qualitatively the hysteresis through a stability analysis in the MF approximation.

The observed sharp drop in the density of active nodes for the initial condition A  =  1 
close to pc

∗ (see figure 6(a)), in the theory and simulations, is reminiscent of the first 
order transition found in ‘random’ k-core percolation [13]. In the latter process there is 
a critical initial fraction of removed nodes (similar to inactive nodes in our spontaneous 
failure-recovery model) that triggers a sharp decrease in the fraction of living nodes (as 
mentioned in section 2 and appendix B.1). Interestingly, we find a similitude between 
our model and ‘random’ k-core percolation because the value of the steady fraction of 
active nodes just before the first order transition (with initial condition A  =  1), denoted 
by Ac, is near to the critical value of the control parameter q of this percolation process.

In figure 6(b) we plot the value of Ac for p p pc δ= −∗ ∗ ∗ (i.e. just before A goes down 
sharply) for different values of r and m obtained from the evolution equations (1)–(3) 
and we compare them with the threshold value qc in k-core percolation for the same 
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Figure 5. A (black), I (red) and E (green) as a function of p∗ for RR networks with 
0.01Iγ = , 1Eγ = , m  =  8, and (a) r  =  1 and (b) r  =  5 obtained from the effective 

degree approximation equations (1)–(3). In figure (b), p 0.81c =∗  and Ac  =  0.35 is 
the fraction of active nodes for p p pc δ= −∗ ∗ . Ac and pc

∗ are denoted by arrows.
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values of m (see equations in appendix B.1). From the figure we can see that the values 
of qc predicted by the ‘random’ k-core process at which a giant component disappears 
are in well agreement with the values Ac obtained from our failure-recovery model in 
RR networks.

In these networks the relation between the failure-recovery model and the ‘random’ 
k-core arises from the fact that all the nodes have the same connectivity, and then they 
have the same probability to be active. In appendix B.2 we explain with more detail 
this relation. On the other hand, for a constant value of m, if we consider the case of a 
broader degree distribution, such as a truncated Poisson degree distribution

P k c
k

k k k k
e

!
,

k

min max( ) ( ) ( )λ= Θ − Θ −
λ−

 (8)

in which c is a normalization constant (see figure 7(a)), we also obtain that the steady 
value of A just before the fraction of active nodes drops to zero is near the predicted 
one from ‘random’ k-core percolation, in particular for lower values of m. Additionally, 
in figure 7(b) we plot the probability that a node is active, given that it has connectiv-
ity k. We can see that nodes with k kmin=  have the lowest probability to be active. 
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Figure 6. Figure (a): density of active nodes in the steady state as a function of p∗ 
for RR networks with 0.01Iγ = , 1Eγ = , m  =  8 and r  =  5. The lines were obtained 
from the effective degree approach. Dashed lines (solid lines) correspond to the 
case where the initial condition consists in all nodes in state I (in state A). The 
symbols correspond to the stochastic simulations in which the initial condition 
is I  =  1 (blue circles) and A  =  1 (red triangles). The value of Ac is denoted by a 
horizontal arrow. The vertical arrows indicate the direction of the hysteresis loop. 
Figure (b): the steady fraction of active nodes Ac in our model (symbols) obtained 
from the equations (1)–(3) as a function of r in RR networks for different values of 
m: m  =  4 (green), m  =  8 (red), m  =  16 (blue) for 10I

2γ = −  and 1Eγ = . We compare 
the values of Ac with the critical fraction of non-removed nodes in ‘random’ k-core 
percolation qc at which there is a first order transition that depends on m. The 
values of qc are displayed by dashed lines with the same colors as Ac. To compute 
the value of Ac for each value of r, we evaluate the final fraction of active nodes for 
p 0, 1( )∈∗  with p 10 2δ =∗ − , and then choose the value of p pc=∗ ∗ above which there 
is a sharp decrease in A.
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Nevertheless, the fact that for this network P k1 0.86min( )− =  and besides that the 
probability that a node is active remains nearly constant disregarding its connectiv-
ity, imply that ‘random’ k-core percolation predicts approximately the value of Ac. 
However, as we will show below, if we consider a higher heterogeneity on the con-
nectivities of the nodes than in the previous case, we obtain that the steady state of 
the process can be better described by a ‘targeted’ k-core process rather than by the 
‘random’ k-core percolation.

In figure 8(a) we show the steady fraction of active nodes as a function of p∗ for 
a bimodal network with connectivities k  =  20, k  =  40 and mean connectivity k 32⟨ ⟩ =  
for m  =  16. From the figure we can see that for the initial condition A  =  1, the sys-
tem can exhibit two transitions for high enough value of m. This is expected since as 
p∗ increases, after the first sharp transition the nodes with the lowest connectivity 
will fail, while the nodes with the largest connectivity will remain active (see inset of 
figure 8(a)). Therefore, just before the second transition (p 0.30∗! ) the distribution of 
active nodes is not homogeneous, and as a consequence the ‘random’ k-core percolation 
is not appropriate to describe the steady state. For this case, in appendix B.3 we pres-
ent the equations of the ‘targeted’ k-core percolation that takes into account the inho-
mogeneous distribution of active nodes that we will use to compute qc. In figure 8(b) 
we compare Ac with the value of qc obtained following appendix B.3, for a bimodal 
network for different values of m and r.

From the figure we can see that the values of qc predicted by the ‘targeted’ k-core 
process at which the giant component disappears are in well agreement with the values 
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Figure 7. Figure (a): density of active nodes in the steady state as a function of p∗ 
obtained from the simulations for a network with a truncated Poisson distribution 
(see equation (8)) with k 8min = , k 20max =  and 10λ =  and for 0.01Iγ = , 1Eγ = , 
r  =  90, m  =  2 (blue triangles) and m  =  4 (red squares). The dotted lines correspond 
to the value of qc predicted by the ‘random’ k-core percolation, at which the fraction 
of active nodes would drop to zero if active nodes were homogeneously distributed. 
The dashed line corresponds to the value of qc obtained from equations (B.3) and 
(B.5), and using the steady distribution of actives nodes qk (see equation (B.6)) 
obtained just before the fall of A. This is explained in the end of section 3.2. 
Figure (b): steady fraction A(k) of active nodes of connectivity k relative to P(k), 
obtained from the simulations just before the fall of A. Blue symbols correspond 
to the case m  =  2 and the red ones to m  =  4.
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Ac obtained from our failure-recovery model in bimodal networks. Additionally, using 
‘targeted’ k-core percolation, we also compute the value of qc for the truncated Poisson 
distribution (see dashed line in figure 7(a)) with m  =  4; in which we obtain that this 
value is closer to Ac than the one obtained by ‘random’ k-core percolation. Therefore, 
these results suggest that the equations of ‘targeted’ k-core percolation could be con-
sidered in non-regular networks and used as a benchmark to compare the results with 
a failure-recovery model.

In the following section we will show, using the mean field approach, the region of 
parameters where the system has hysteresis and oscillatory behaviors.

4. Stability analysis through mean field equations

4.1. Deduction of mean field equations

In order to study the oscillating and hysteresis regions of our failure-recovery sponta-
neous model, we use the mean field equation (MF) derived from the effective degree 
approach. In particular for RR networks, these equations depict a dynamics in which 
nodes shuffle their links instantaneously [22]. While in this approach the information 
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Figure 8. Figure (a): density of active nodes in the steady state as a function 
of p∗ for a bimodal network with connectivities k  =  20 and k  =  40 with k 32⟨ ⟩ =  
for 0.01Iγ = , 1Eγ = , m  =  16 and r  =  10. The solid lines were obtained from the 
effective degree approach. The symbols and solid lines have the same meaning as in 
figure 6. The dotted line corresponds to the value of qc predicted by the ‘random’ 
k-core percolation. The dashed line corresponds to the value of qc obtained from 
equations (B.3) and (B.5), and using the steady distribution of active nodes qk (see 
equation (B.6)) obtained just before the second fall of A. In the inset we show 
the bar graphic of P(k) (light blue), and A(k) (red) measured in the steady state 
just before the second fall. Figure (b): the steady fraction of active nodes Ac in 
our model (symbols) obtained from equations (1)–(3) as a function of r in bimodal 
networks for different values of m: m  =  8 (red) and m  =  16 (blue) for 10I

2γ = −  and 
1Eγ = . Dashed lines were obtained using equations (B.3)–(B.6) as explained in the 

main text.
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about the structure of the network is lost, we can estimate the region of parameters 
where the hysteresis and the oscillatory phase exist.

Adding the system of equations (1)–(3) over kA, kI and kE, we obtain the following 
equations

A

t
I E r A k k k pA

d

d
, , ,I E

k

m

k

k

k

k

A I E
0 0 0A I E

max max
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 (9)
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= = =

 (11)

Notice that these equations do not depend on WA, WI, WE because the terms with 
these coefficients cancel each other after the addition of the equations mentioned above. 
Since A  +  I  +  E  =  1, the evolution equations can be written as

A

t
I A I r A k k k pA

d

d
1 , , ,I E

k

m

k
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k

A I E
0 0 0A I E

max max
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 (12)

I

t
I pA

d

d
.Iγ= − + (13)

Using a mean field approximation, the third term of equation (12) can be approximated 
by
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and thus the evolution equations in the MF approach are given by
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At the steady state of the process A t I td d d d 0/ /= = , and thus A satisfies the fol-
lowing self-consistent equation (obtained from equations (15) and (16))
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Despite that in the steady state the value of A depends only on the ratios p I/γ  and r E/γ , 
the stability of the solutions or fixed points depends on the individual values of the 
parameters. In order to study the stability of the fixed points we linearize the equa-
tions (15) and (16) around the fixed points obtained from equation (17) and compute 
the eigenvalues of the Jacobian matrix evaluated at the steady state3.

In the following we will analyze the stability of the solutions in the steady 
state for I Eγ γ<  and I Eγ γ> , and show that only for I Eγ γ< , the system can sustain  
oscillations.

4.2. Steady states for γI < γE

In figure 9 we show the stability of the solutions of the density of active nodes for 
different values of r for RR networks with z  =  32, 0.01Iγ = , 1Eγ = , m  =  8.

We observe that for r  =  1, (see figure 9(a)) there is only one stable fixed point of 
equation (17) for each value of p∗ . As r increases to r  =  2 and r  =  3, for a range of val-
ues of p∗ the fixed points of equation (17) are all unstable, and therefore the densities 
oscillate4 (see figures 9(b) and (c)), i.e. an oscillatory regime appears for the case I Eγ γ< , 
as observed also in the effective degree formalism (see figure 4). Finally, for the largest 
value of r (r  =  4, see figure 9(d)) a hysteresis region appears, i.e. there are two stable 
fixed points of equation (17) for some values of p∗.

Notice that the mean field equations (15) and (16) qualitatively captures all the 
regimens observed in our model for the case I Eγ γ< . In figure 10(a) we show the three 
regimens in the plane p∗-r E/γ  in which the oscillatory region is bounded but not negli-
gible. Therefore the oscillatory behavior is robust in a scenario at which the parameters 
can vary slightly over time within this region. This is an important fact for biologi-
cal systems in which sustained oscillations are present [23–27]. In order to study the 
dependency of the amplitude and the frequency on the parameters, we measure directly 
these magnitudes from the integration of equations (15) and (16). In figures 10(b) and 
(c) we plot the amplitude and frequency respectively, which shows that for larger values 
of r E/γ  the system oscillates slower but with a higher amplitude, which is consistent 
with the fact that the parameters are close to the hysteresis region (see region III in 
figure 10(a)). Furthermore, we observe that in this system the amplitude of the oscil-
lations can be suppressed abruptly when crossing the transition line, from region II to 
I. Finally, we obtain that the frequency and the amplitude are more sensible under 
variations in r E/γ  than under variations of p∗. This result is compatible with the shape 
of the oscillations, shown in figure 4(a), which have similar amplitudes and frequencies 
for different values of p∗.

4.3. Steady regimes for γI > γE

In order to study the steady state for I Eγ γ>  we will construct the Lyapunov function 
V(A,I ) which allows to study the global stability of a system. The Lyapunov func-
tion can only be used if its derivative with respect to time is negative [28]. In order 

3 Eigenvalues with a positive (negative) real part corresponds to an unstable (stable) fixed point.
4 See classical theorem of Poincaré-Bendixson in [31].
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expressed as a non-gradient flow [28], i.e.
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where a and b are unknown positive constants whose values should be consistent with 
equations (15) and (16). Here, we use without loss of generality, b  =  1.

After matching the right hand side of equations (18) and (19) with equations (15) 
and (16) and integrating, the Lyapunov function V(A, I ) can be written as
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Figure 9. Steady state of A as a function of p∗ for a RR network with 0.01Iγ = , 
1Eγ = , m  =  8 and r  =  1 (a), r  =  2 (b), r  =  3 (c) and r  =  4 (d). The curves represent 

the fixed points obtained from equation (17). Colored lines represent different 
stability-regimes obtained from the eigenvalues of the system of equations (15) and 
(16): light blue (unstable) and blue (stable). In the insets of figures (b) and (c) we 
show the temporal evolution of the average density of active nodes (obtained from 
equations (15) and (16)) for the values of p∗ indicated by the arrow.
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where

a
p

,I Eγ γ
=

−
 (21)

with I Eγ γ>  (in order to ensure that a  >  0). Using the proposed Lyapunov function 
and the values of a and b, it is straightforward to show that these values allows to 
reconstruct equations (15) and (16) through equations (18) and (19). In figure 11, we 
plot the Lyapunov function for 0.01Eγ =  and 1Iγ = . From the plot we can see that the 
Lyapunov function has two local minimums.

For I Eγ γ> , V A I td , d 0( )/ < , and therefore the overall system tends to a local mini-
mum. In addition, since V(A,I) is expressed in terms of powers of A and I, it has a finite 
number of local and isolated minimums, hence an oscillatory behavior is not allowed 
because the system get stuck in a local minimum, from which it cannot escape due to 
the lack of fluctuations. Notice that in the case I Eγ γ< , we cannot use the Lyapunov 
function given by equation (20), since for this case the parameter a in equation (18) is 
negative. This implies that we cannot guarantee that V A I td , d 0( )/ < , and therefore the 
dynamics of the system is not necessarily in a minimum of the function V(A,I ).

(a)

(b)

(c)

Figure 10. Figure (a): phase diagram in the plane p∗-r E/γ  for 1Eγ =  and 0.01Iγ = . 
The region I (blue) corresponds to one fixed point of the fraction of active nodes, 
region II (white) corresponds to an oscillatory regime and region III (red) depicts 
the parameters of the hysteresis region. The vertical dotted lines correspond to the 
paths on the phase diagram studied in figure 9. Figure (b): the amplitude of the 
oscillations in region II of figure (a). Figure (c): frequency (computed as 1/T, where 
T is the period) of the oscillations in region II of figure (a).
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In figure 12 we show the phase diagram in the plane p r E/γ−∗  for the case I Eγ γ> , 
obtained from equation (17). We can see that in region I there is only one stable fixed 
point, while in region II there are two stable fixed points, i.e. the hysteresis behavior is 
present, especially for large values of r E/γ . However, there is not an oscillatory regime, 
which is compatible with the existence of a Lyapunov function. Therefore, the relation 
between Eγ  and Iγ  is a key factor for the existence of sustained oscillations but not for 
the hysteresis.

(a)

(b)

Figure 11. (a): Lyapunov function as a function of A and I for p∗  =  0.50 and 
r  =  4 for m  =  8, 1Iγ =  and 0.01Eγ =  in a RR network. The red and blue points 
correspond to the local minimums of this function. Figure (b): projection of the 
function around the local minimums of figure (a) in the plane V  −  A and V  −  I.

Figure 12. Phase diagram p∗ versus r for m  =  8, 1Iγ =  and 0.01Eγ =  in a RR 
network. Region I (blue) corresponds to the existence of a single value of the fraction 
of active nodes in the steady state and region II (red) depicts the parameters of 
the hysteresis region.
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5. Conclusion

In summary, in this work we study a failure-recovery model in which the failure state 
belongs to two different kinds: internal and external failed nodes. Using the degree 
effective approach and simulations we found theoretically and via stochastic simula-
tions that the system may exhibit hysteresis on the fraction of active nodes and also 
an oscillatory behavior as a result of the competition between external and internal 
inactive nodes. In the steady state we find that in random regular networks, the critical 
fraction of active nodes below which there is an abrupt collapse is close to the threshold 
in the ‘random’ k-core percolation. However for non-regular networks, the topology can 
lead to an inhomogeneous distribution of active nodes which can be better described 
by ‘targeted’ k-core percolation rather than by a ‘random’ k-core percolation. Using a 
MF approach, we obtain that for E Iγ γ>  there is a range of the parameters at which 
the system can exhibit sustained oscillations, and that their amplitude increases and 
their frequency decreases as the parameters approach to the region at which hysteresis 
is present. Finally we show through the Lyapunov function that for I Eγ γ> , the oscilla-
tory phase is absent but can still exist a hysteresis region. We believe that the model we 
proposed and the equations developed in this work can be the useful for future research 
on dynamical systems and their relation with percolation theory. A possible extension 
of our model would be to generalize our equations to take into account heterogeneous 
values of m. Another possible extension could be to model the process in interacting 
networks [29] which could allow to understand how the trans itions can be affected by 
the interaction.
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Appendix A. Derivation of p∗

In this section, we obtain the parameter p∗ as the steady fraction of inactive internal 
nodes when r 0Eγ = = , which corresponds to the case in which the nodes on the net-
work can only be in states A and I .

For the case r 0Eγ = =  the nodes activate and fail intermittently without interac-
tion between them and therefore, the temporal evolution of the fraction of nodes in 
state A and I is governed by the following equations,

A

t
I p A

d

d
,Iγ= − (A.1)

I

t
I p A

d

d
.Iγ= − + (A.2)
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Notice that we are assuming as initial condition of the dynamics that there are no 
externally failed nodes. Since E 0≡ , then I  +  A  =  1 and the equation (A.2) reduces to,

I

t
I p I

d

d
1 ,I ( )γ= − + − (A.3)

whose solution in the steady state is given by,

I t
p

p
.

I

( → )
γ

∞ =
+ (A.4)

For small values of p, the last expression can be rewritten as,

( )
⎛
⎝⎜

⎞
⎠⎟γ γ

→ ∞ ≈ ≈ − − ≡ ∗I t
p p

p1 exp .
I I

 (A.5)

Appendix B. k-core percolation

B.1. ‘Random’ k-core percolation

Random k-core percolation is an irreversible dynamical process in which a node can be 
removed (dead) or non-removed (living). In the initial state, all nodes are living and then 
a randomly fraction 1  −  q of nodes is removed. Afterwards, all the living nodes with m 
or less living neighbors, are removed. This step is repeated iteratively until the system 
is composed only by living nodes with more than m living neighbors. In [13], using a 
generating function formalism, the steady state of the final fraction of living nodes in 
complex networks P∞, was described by solving the following self-consistent equation

Q q q
kP k

k
k

u
Q Q1 1 1 ,

k k

k

u

m
k u u

0

1
1

min

max ( )( )
⟨ ⟩

( )∑ ∑= − + − −∞
= =

−

∞
− −

∞ (B.1)

where Q∞ is the probability of reaching a dead node through a randomly chosen link. The 
value of Q∞ that depends on q is found solving the self-consistent equation (B.1) in Q∞.
With the solution of Q∞ for a given value of q, we obtain the fraction of nodes in the 
giant component P∞:

P q P k k
u

Q Q1 1 .
k k

k

u

m
k u u

0min

max ( )( ) ( )
⎛
⎝⎜

⎞
⎠⎟∑ ∑= − −∞

= =
∞
−

∞ (B.2)

B.2. Relation between the failure-recovery model in RR networks and ‘random’ k-core 
percolation

In order to explain the similitude between Ac and qc for RR networks, discussed in sec-
tion 3.2 (see figure 6(b)), in figure B1 we plot the simulations for: (i) A, (ii) the fraction 
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of active nodes with k mA ⩽  (Am) and (iii) the fraction of active nodes that belong to the 
GC (AGC) as a function of p∗.

From the figure, we can see that for A  >  Ac almost all active nodes belong to the 
GC with kA  >  m while for A  <  Ac almost all active nodes have k mA ⩽ . Heuristically, in 
a k-core percolation framework, these results can be interpreted in the following way: 
assuming that the total fraction of active nodes at which A A qc c∼ ≅  are placed ran-
domly on the network, k-core percolation predicts the existence of a GC with active 
nodes with at least kA  >  m neighbors, which avoids the collapse of the system. If the 
fraction of active nodes is below Ac this GC with active nodes with kA  >  m does not 
exist. Therefore, if the system has a large value of r (i.e. if the rate at which A goes to 
E is large compared to the rate of recovery Eγ ), then the fraction of external inactive 
nodes rises sharply and A collapses. Therefore for large values of r, k-core percolation 
theory allows to estimate approximately the value of active nodes below which there is 
a first order transition.

B.3. Targeted k-core percolation

Given a network with degree distribution P(k), let 1  −  qk be the probability that a 
node with degree k is initially removed on the cascade of failure in a k-core percolation 
process. Then, following [30], it is straightforward to show that the final fraction of 
non-removed nodes is obtained solving the following equations,

Q
kP k

k
q q k

u
Q Q1 1 1 ,

k k

k

k k
u

m
k u u

0

1
1

min

max ( )( )
⟨ ⟩

( )
⎛
⎝⎜

⎞
⎠⎟∑ ∑= − + − −∞

= =

−

∞
− −

∞ (B.3)

P P k q k
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Q Q1 1 ,
k k

k

k
u

m
k u u

0min

max ( )( ) ( )
⎛
⎝⎜

⎞
⎠⎟∑ ∑= − −∞

= =
∞
−

∞ (B.4)
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Figure B1. A (black, ⚪), Am (blue, !) and AGC (red, △) as a function of p∗ obtained 
from simulations for m  =  8, r  =  10, 10I

2γ = −  and 1Eγ =  with N  =  105. The dotted 
line indicates qc  =  0.38 and the arrow indicates Ac  =  0.36.
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where Q∞ is the probability of reaching a removed node through a link. In this ‘tar-
geted’ k-core percolation process, likewise as in the ‘random’ k-core percolation, we also 
called q the total initial fraction of non-removed nodes, i.e.

q P k q .
k k

k

k

min

max

( )∑=
=

 (B.5)

In the ‘random’ k-core percolation process, a variation in the value of q implies that 
the fraction of non-removed nodes varies in the same proportion independent of its con-
nectivity. However in the ‘targeted’ k-core percolation process, there is not a unique 
way to change the fraction qk. Therefore we propose that for a given distribution of qk 
which satisfies equation (B.5), a decreasing on the value of q implies that the distribu-
tion qk decreases from its tail, i.e. the non-removed nodes with the highest connectivity 
are removed. A similar process is performed when the value of q is increased. Then we 
propose that in the steady state of our failure-recovery model for heterogeneous degree 
distributions, qk is given by

q A k k k, ,k
k k

k

k k

k

k k

k

A I E k k k k,

A I E

A I E

min

max

min

max

min

max

( )∑ ∑ ∑ δ=
= = =

+ + (B.6)

In order to show that for A  =  Ac, this distribution of non-removed nodes is near a 
trans ition point in a ‘targeted’ percolation process, we vary the value of q (given 
by equation (B.5)) starting from the distribution qk (see equation (B.6)) as explained 
above, in order to compute qc. In figure B2 we summarize with a schematic, the steps 
to compute the value of qc.

References

 [1] Hudson A E, Calderon D P, Pfaff D W and Proekt A 2014 Proc. Natl Acad. Sci. USA 111 9283
 [2] Bose I and Ghosh B 2007 J. Biosci. 32 991
 [3] Majdandzic A, Podobnik B, Buldyrev S V, Kenett D Y, Havlin S and Stanley H E 2014 Nat. Phys. 10 34

Figure B2. Flow diagram to compute qc in targeted k-core percolation.

http://dx.doi.org/10.1088/1742-5468/2016/09/093402
http://dx.doi.org/10.1073/pnas.1408296111
http://dx.doi.org/10.1073/pnas.1408296111
http://dx.doi.org/10.1007/s12038-007-0103-3
http://dx.doi.org/10.1007/s12038-007-0103-3
http://dx.doi.org/10.1038/nphys2819
http://dx.doi.org/10.1038/nphys2819


Failure-recovery model with competition between failures in complex networks: a dynamical approach

24doi:10.1088/1742-5468/2016/09/093402

J. S
tat. M

ech. (2016) 093402

 [4] Van Mieghem P, Sahnehz F D and Scoglioz C 2014 53rd IEEE Conf. on Decision and Control (IEEE)  
pp 6228–33

 [5] Lindquist J, Ma J, van den Driessche P and Willeboordse F H 2011 J. Math. Biol. 62 143
 [6] Anderson R M, May R M and Anderson B 1992 Infectious Diseases of Humans: Dynamics and Control vol 

28 (New York: Wiley)
 [7] Pastor-Satorras R, Castellano C, Van Mieghem P and Vespignani A 2015 Rev. Mod. Phys. 87 925
 [8] Taylor M, Simon P L, Green D M, House T and Kiss I Z 2011 J. Math. Biol. 64 1021
 [9] Miller J C and Kiss I Z 2014 Math. Modelling Nat. Phenom. 9 4
 [10] Rock K, Brand S, Moir J and Keeling M J 2014 Rep. Prog. Phys. 77 026602
 [11] Gleeson J P 2011 Phys. Rev. Lett. 107 068701
 [12] Goltsev A V, de Abreu F V, Dorogovtsev S and Mendes J F F 2010 Phys. Rev. E 81 061921
 [13] Dorogovtsev S N, Goltsev A V and Mendes J F F 2006 Phys. Rev. Lett. 96 040601
 [14] Cellai D, Lawlor A, Dawson K A and Gleeson J P 2011 Phys. Rev. Lett. 107 175703
 [15] Cellai D, Lawlor A, Dawson K A and Gleeson J P 2013 Phys. Rev. E 87 022134
 [16] Baxter G, Dorogovtsev S, Lee K-E, Mendes J and Goltsev A 2015 Phys. Rev. X 5 031017
 [17] Molloy M and Reed B 1995 Random Struct. Algorithms 6 161
 [18] Barthélemy M, Barrat A, Pastor-Satorras R and Vespignani A 2005 J. Theor. Biol. 235 275
 [19] Rozhnova G and Nunes A 2009 Phys. Rev. E 79 041922
 [20] Rozhnova G and Nunes A 2010 Eur. Phys. J. B 74 235
 [21] Kuperman M and Abramson G 2001 Phys. Rev. Lett. 86 2909
 [22] Miller J C, Slim A C and Volz E M 2012 J. R. Soc. Interface 9 890
 [23] Rapp P E 1987 Prog. Neurobiol. 29 261
 [24] Ghosh D, Banerjee T and Kurths J 2015 Phys. Rev. E 92 052908
 [25] Lisman J and Buzsáki G 2008 Schizophrenia Bull. 34 974
 [26] Menck P J, Heitzig J, Kurths J and Schellnhuber H J 2014 Nat. Commun. 5 3969
 [27] Jalife J, Gray R A, Morley G E and Davidenko J M 1998 Chaos 8 79
 [28] San Miguel M and Toral R 2000 Instabilities and Nonequilibrium Structures VI (New York: Springer)  

pp 35–127
 [29] Majdandzic A, Braunstein L A, Curme C, Vodenska I, Levy-Carciente S, Stanley H E and Havlin S 2016 

Nat. Commun. 7 10850
 [30] Callaway D S, Newman M E J, Strogatz S H and Watts D J 2000 Phys. Rev. Lett. 85 5468
 [31] Verhulst F 2006 Nonlinear Differential Equations and Dynamical Systems (New York: Springer)


