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Simultaneous first- and second-order percolation transitions in interdependent networks
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In a system of interdependent networks, an initial failure of nodes invokes a cascade of iterative failures that
may lead to a total collapse of the whole system in the form of an abrupt first-order transition. When the fraction
of initial failed nodes 1 − p reaches criticality p = pc, the abrupt collapse occurs by spontaneous cascading
failures. At this stage, the giant component decreases slowly in a plateau form and the number of iterations in the
cascade τ diverges. The origin of this plateau and its increasing with the size of the system have been unclear.
Here we find that, simultaneously with the abrupt first-order transition, a spontaneous second-order percolation
occurs during the cascade of iterative failures. This sheds light on the origin of the plateau and how its length
scales with the size of the system. Understanding the critical nature of the dynamical process of cascading failures
may be useful for designing strategies for preventing and mitigating catastrophic collapses.
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I. INTRODUCTION

Interdependent network systems have attracted growing
interest over the past decade [1–21]. They represent real world
systems composed of different types of interrelations, con-
nectivity links between entities (nodes) of the same network
to share supply or information, and dependency links, which
represent a dependence of one node on the function of another
node in another network. Consequently, failure of nodes may
lead to two different effects: removal of other nodes from
the same network that become disconnected from the giant
component and failure of dependent nodes in other networks.
The synergy between these two effects leads to an iterative
chain of cascading failures. Buldyrev et al. [5] show that, in a
system of two fully interdependent random networks, when the
fraction of failed nodes 1 − p is smaller than a critical value
p > pc, the cascading failures stop after several iterations and
a finite fraction of the system P∞ > 0 remains functioning
and connected to the giant component. A larger initial damage
p < pc invokes a cascading failure that fragments the entire
system and P∞ = 0. Thus, when p approaches pc from above,
the giant component P∞ discontinuously jumps to zero in the
form of a first-order transition. The number of iterations in
the cascade τ diverges when p approaches pc, a behavior that
was suggested as a clear indication for the transition point in
numerical simulations [22].

Among the main features found are the collapse of the
system with time (steps of cascading failures) in a plateau
form (see Fig. 1) and the increase of the plateau length
with the system size. Although this phenomena was observed
in different models and in real data, its origin remained
unclear [5]. To understand the origin of these phenomena we
focus on fully interdependent Erdős-Rényi (ER) networks.
Surprisingly, we find here that during the abrupt collapse
a hidden spontaneous second-order percolation transition
appears that controls the cascading failures, as demonstrated
in Fig. 1. We show here that this simultaneous second-order
phase transition, characterized by long branching trees near
criticality, is the origin of the observed long-plateau regime
in the cascading failures and its dependence on system size.
Moreover, the second-order transition sheds light on the critical

behavior observed in the collapse of real world systems such
as the power-law distribution of blackout sizes [23–26].

We also find, as a result of this understanding, that even
though the mean-field (MF) approximation is found to be
accurate in predicting pc and P∞, it does not represent the
dynamical process of cascading failures near criticality. This
is because the critical dynamics is strongly affected by random
fluctuations due to the second-order transition that are not
considered in the MF approach. We study the effect of these
fluctuations on the total number of iterations τ at criticality and
find that its average and standard deviation scale as N1/3, in
contrast to the MF prediction of 〈τ 〉 ∼ N1/4 [5]. We present a
theory for the dynamics at criticality, which explains the origin
of this difference.

II. MODEL OF INTERDEPENDENT NETWORKS

In the fully interdependent networks model, A and B are
two networks of the same size N . Each A node ai depends
on exactly one randomly chosen B node bj and bj also only
depends on ai . The initial attack randomly removes a fraction
1 − p of A nodes in one network. Nodes in one network
that depend on removed nodes in the other network are also
removed, causing a cascade of failures. As nodes and edges are
removed, each network breaks up into connected components
(clusters). It is known that for single random networks, there is
at most one component (giant component) that occupies a finite
fraction of all N nodes (see [27]). We assume that only nodes
belonging to the giant component connecting a finite fraction
of the network are still functional. Since the two networks
have different topological structures, the failure will spread as
a cascading process in the system [18,28,29]. Here one time
step means that dependency failures and percolation failures
occur at a given iteration in networks A and B, respectively,
and each network reaches a new smaller giant component.

The MF theory of this model with ER networks with average
degrees kA and kB has been developed using generating
functions of the degree distribution. This theory predicts
the giant component size as a function of p and accurately
evaluates the first-order phase transition threshold pMF

c for the
infinite-size system. In fact, each realization in the simulation

1539-3755/2014/90(1)/012803(7) 012803-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.90.012803


ZHOU, BASHAN, COHEN, BEREZIN, SHNERB, AND HAVLIN PHYSICAL REVIEW E 90, 012803 (2014)

(a) (b) (c)

p t t

P ∞

B
ra

nc
hi

ng
 p

ro
ce

ss

Ψ
t

FIG. 1. (Color online) Demonstration of the simultaneous first- and second-order transitions in cascading failures of interdependent
networks. At the critical point pc, (a) the mutual giant component has a sudden jump to zero, while (b) the dynamical process of cascading
failures is governed by a long plateau stage. In this plateau stage, a second-order percolation occurs, which is (c) characterized by a random
branching process at criticality, i.e., the average branching factor is one [see Fig. 3(b)].

has its own critical threshold, which we denote by pc. In this
paper a new realization means that we generate networks A
and B again, as well as the interdependency links, and then
we perform the initial attack according to a new random attack
order (see [30]). Note that for N → ∞, pc values in single
realizations are the same and equal to pMF

c .

III. SCALING BEHAVIOR IN THE CRITICAL DYNAMICS

Here we investigate the dynamics of the critical cascading
failures for each single realization of a pair of finite coupled
networks. For simplicity, networks A and B have the same
average degree k. The value of pc of each realization can be
determined accurately by randomly removing nodes one by
one until the system fully collapses.

Figure 2(a) exhibits several realizations of simulations
at pMF

c . As seen at criticality, the total time τ has large
fluctuations. Each realization has a stage of time steps (a
plateau) where the giant component of network A decreases
very slowly. Before or after this plateau stage, the cascading
failure process is much faster.

Figures 2(b) and 2(c) show the scaling behaviors of the
mean and the standard deviation of τ as functions of N and
p − pc. In our simulations, we consider p ! pc and only those
realizations that fully collapse. We wish to understand how N
and p − pc affect the mean and the standard deviation of the
total time τ .

It can be seen from Fig. 2(b) that 〈τ 〉 increases with N as
〈τ 〉 ∼ N1/3 at p = pc. However, when p < pc, 〈τ 〉 becomes
constant for large values of N . Thus, we assume the scaling
function

〈τ 〉 ∼ N1/3f (u), (1)

where u = (pc − p)N1/α , f (u) is a function that satisfies
f (u) ∼ const for u ' 1 and f (u) ∼ u−α/3 for u ( 1, and
we determine α such that the best scaling occurs.

To test Eq. (1) and identify α, we plot in Fig. 2(c) 〈τ 〉/N1/3

versus u. We find that the best choice of α for obtaining a
good scaling collapse is α = 3/2. In this way, we can see
that the slope of each curve changes from 0 to about −1/2 at
u = (pc − p)N2/3 ≈ 1. Therefore, the scaling behavior of 〈τ 〉
for N < N∗ ∼ (pc − p)−3/2 is

〈τ 〉 ∼ N1/3, (2)

independently of p [Fig. 2(b)]. This means that system
sizes of N < N∗ are at criticality even though p < pc. For
N > N∗, 〈τ 〉 ∼ N1/3u−1/2 = (pc − p)−1/2, independently of
N [Fig. 2(b)] (noncritical behaviors). This yields the crossover
N∗ ∼ (pc − p)−α = (pc − p)−3/2 between the critical behav-
ior for N < N∗ and noncritical for N > N∗. For p → pc,
N∗ → ∞ and for all N one observes the critical behavior. The
crossover system size N∗ can be regarded as a correlation size
analogously to the correlation length in regular percolation
[31,32].
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FIG. 2. (Color online) (a) Dynamical process of the giant component size ψt of network A in simulation at pMF
c (15 realizations).

(b) Scaling behavior of the mean (blue) and the standard deviation (red) of the total time τ at pc (critical) or below pc (noncritical) for each
realization. Each curve here corresponds to a fixed value of p. (c) Scaled version of (b). We consider the cases for (a) N = 300 000 and k = 5
with 15 realizations and (b) and (c) k = 5 for the different N values we analyzed. Each point here is the mean or the standard deviation over
200 realizations of N = 106 and order of 104 realizations for N ! 300 000.

012803-2



SIMULTANEOUS FIRST- AND SECOND-ORDER . . . PHYSICAL REVIEW E 90, 012803 (2014)

Figure 2(b) also illustrates the scaling behaviors of the
standard deviation στ . For p = pc, we obtain στ ∼ N1/3,
i.e., it increases as the same rate as the mean. However, for
p < pc, the slope in the right tail of στ in Fig. 2(b) is about
−1/3. Thus, we assume a scaling function for στ :

στ ∼ N1/3g(u), (3)

where u = (pc − p)N1/α and g(u) satisfies g(u) ∼ const for
u ' 1 and g(u) ∼ u−2α/3 = u−1 for u ( 1.

Figure 2(c) shows that the scaling behavior of στ assumed
in Eq. (3) is supported by simulations with the best choice α =
3/2 as for 〈τ 〉. The slope of the right tail in Fig. 2(c) is indeed
−1. Thus, for N < N∗, we have the critical behavior στ ∼
N1/3 and for N > N∗, στ ∼ N1/3u−1 = N−1/3(pc − p)−1.
Thus, we have the noncritical behavior also consistent with
Fig. 2(b).

IV. SPONTANEOUS SECOND-ORDER
PERCOLATION TRANSITION

Next we explore the mechanism behind the scaling be-
haviors near pc. We show that it is due to a spontaneous
second-order percolation transition and explain the deviation
from the MF theory. The failure size st , that is, the number
of A nodes that fail at time step t during the plateau from the
coupled networks system, is a zero fraction of the network size
N . This is supported by simulations shown in Fig. 4(a). We
regard each node that fails due to dependency at the beginning
of the plateau stage as a root ai of a failure tree (see Fig. 1).
After that, the removal of each root ai will cause the failure
of several other A nodes due to percolation. Then several B
nodes will fail due to dependency and percolation in network
B. At the next time step, several A nodes further fail due to
dependency and percolation, which can be regarded as the
result of the original removal of the root node ai . Notice that
the failures in network A caused by removing different single
nodes ai have very few overlaps due to the randomness and the
large size of N . Therefore, we can describe the plateau stage
by the growth of all these independent failure trees with the
branching factor ηt = st+1/st .

Figures 3(a) and 3(b) show the variation of st and ηt ,
respectively, in a typical realization that finally reached a total
collapse. We observe that ηt increases during the cascades
from below 1 to around 1 (with some fluctuations) at the
plateau and finally to above 1 when the system starts to
collapse. The value of ηt is smaller than 1 in the beginning
of the cascading process since the individual networks are
still well connected and a large amount of damage in one
network leads to a smaller degree of damage in the second
network [see Fig. 3(a)]. As cascading progresses the value
of ηt increases since both networks become more dilute and a
failure in one step leads to relatively greater damage in the next
step [see Fig. 3(b)]. In this process the spontaneous behavior
of ηt generates a new phase transition. When ηt approaches
1 the system spontaneously enters a second-order percolation
transition where the cascading trees become critical branching
processes [31] of typical length of N1/3 as explained below.
These long trees are the origin of the long plateau observed in
Fig. 2(a).
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FIG. 3. (Color online) (a) The (blue) line with circles is the
variation of failure sizes st (only the plateau stage) for one realization
in the simulation. Here k = 5, p = pMF

c , and N = 50 000. The (green)
dashed dotted line shows st for the MF case for k = 5, N = 50 000,
and p = 2.454/k slightly below pMF

c = 2.4554/k. (b) The (red) line
with rectangles shows the variation of the average branching factor
ηt for one realization in the simulation. Here k = 5, p = pMF

c , and
N = 50 000. The (green) dashed dotted line shows ηt of the analytic
MF solution. Here k = 5, N = 50 000, and p = 2.4536/k below
pMF

c . In both (a) and (b) the MF values have similar behaviors to
the simulation values, but the MF curves are smooth and show no
fluctuations. (c) The average branching factor 〈ηsingle〉 for different
values of p on a single ER network. Here k = 5 and N = 250 000 for
3000 realizations. A threshold p̃ where 〈ηsingle〉 = 1 can be observed
at p = p̃ ≈ 0.35. (d) Variation of the effective p for one realization in
the simulations. Here k = 5, p = pMF

c = 2.4554/k, and N = 50 000.

The plateau stage starts when each of the n failed nodes
at iteration T1 leads, on average (we refer to the fluctuations
explicitly in the following), to failure of another single node
(see [33]). This is a stable state, leading to the divergence of τ
for N → ∞. In a finite system of size N , however, the accu-
mulated failures slightly reduce p and the number of failures at
each iteration gradually increases. This bias can be estimated
by considering the percolation on single networks as follows.

At each time step t , the giant component size ψt of network
A can be equivalently regarded as randomly attacking a
fraction 1 − p on a single ER network. This specific value
of p, called the effective p and denoted here by peff , can be
obtained theoretically by solving the equation ψt = pg(p),
where g(p) is the fraction of nodes in the giant component
after randomly removing a fraction p of nodes (see [5]).

Moreover, ηt can be related to the branching factor for
a single network. Consider randomly removing a fraction
1 − p of nodes in an ER network, which makes some other
nodes nonfunctional due to percolation, i.e., disconnected
from the giant component. Then we randomly remove one
more node within the giant component and we use ηsingle
to denote the number of nodes that fail additionally due to
percolation. Notice that ηsingle is the branching factor for the
additionally removed node. Figure 3(c) shows the relation
between p and ηsingle for an ER network. Note that the
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branching factor diverges (for infinite systems) when p → p+
c

and converges to 0 when p → 1. Let p̃ be the critical value
of p where 〈ηsingle〉 = 1. Then we see from Fig. 3(c) that
p̃ ≈ 0.35.

For two coupled ER networks, at each time step t in the
plateau stage, the difference between the giant components of
networks A and B is small compared to the giant component
sizes. Thus, each A (B) node that fails due to dependency
can be approximately regarded as randomly removing one
more node from the giant component of network A (B).
Therefore, ηt ≈ 〈ηsingle〉2 for the plateau stage. Notice that
when 〈ηsingle〉 = 1, ηt also equals to 1 and the threshold
p̃ ≈ 0.35 is also valid for coupled ER networks. This can be
seen in Fig. 3(d), which shows the evolution of peff in the same
realization of Fig. 3. We can see that the interaction between
peff and 〈ηt 〉 is a determinate factor for the plateau stage. As
shown in Fig. 3, when peff gets smaller, ηt increases to about
1. This causes a range of time steps where st is approximately
a constant with some random fluctuations. Here the random
fluctuations of ηt will determine the end of the cascading
process, with or without a total collapse.

Based on these observations, we assume a random process
of cascading failures starting at the beginning of the plateau
state at t = T1. Let n = sT1 , which is also the number of
independent failure trees, and consider time steps T = t − T1.
The variation of the failure sizes sT is determined by both the
systematic bias and the random fluctuations. Here the random
fluctuations can be described by a Gaussian random walk from
the value of n.

Assuming that peff = p̃, ηT = 1 at T = 0, and ηT decreases
linearly when peff increases near p̃, ηT = 1 − C&peff . Here C
is a positive constant and &peff is the increment of peff from p̃,
which is approximately the variation of the giant component
size of network A. Therefore, &peff = −

∑T
i=0 si/N . At T =

1 we have s1 = n(1 − C&peff) = n(1 + C n
N

) = n + C
N

n2. At
T = 2 we have s2 = s1[1 + C

N
(n + s1)]. After casting small

terms, we obtain s2 = n+ 3 C
N

n2. Similarly, we can obtain, at T ,

sT = n +
(

T∑

i=1

i

)
C

N
n2 = n + T (T + 1)

2
C

N
n2. (4)

Therefore, the order of the systematic bias of failure sizes from
T1 to T2 is n2T 2

N
. If at some iteration the number of failures

becomes zero, the cascading process stops and the system
survives. This can happen when n −

√
n
√

T = 0, thus

Tstop ∼
√

n. (5)

If it does not stop, the cascading failures continue and for large
T the bias will grow (faster than the fluctuations), leading
to complete collapse. The balance between the bias and the
fluctuations may continue as long as

n2T 2

N
∼

√
n
√

T . (6)

Equations (5) and (6) yield that n ∼ T ∼ N1/3, which is
supported by our simulation results in Fig. 2(b), showing
〈τ 〉 ≡ T ∼ N1/3.

The above analysis also leads to the scaling law for the
failure size at the beginning of the plateau stage: n ∼ N1/3.
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FIG. 4. (Color online) (a) Scaling results of the mean and the
standard deviation of the average failure size 〈st 〉 from T1 to T2,
which is also the approximate number of branching processes for
p = pc and k = 5. The number of realizations is same as in Fig. 2(b).
(b) The PDF of failure tree sizes Stree for the case p = pc, k = 3,
N = 100 000, and 4537 trees in 80 realizations.

This is supported by simulations shown in Fig. 4(a), which
exhibits the average failure size 〈st 〉 along the plateau stage
near criticality.

The critical behavior at the plateau is also represented in
the distribution of failure tree sizes obtained in simulations
shown in Fig. 4(b). Here we determine the beginning and the
end of the plateau (see [33]) and identify all A nodes that
fail due to dependency in each of the parallel failure trees. At
each time step, the growth of each tree is determined by the
branching factor ηt . On the plateau, most trees will rapidly
die out, while several trees keep growing and become large.
Figure 4(b) displays the probability density function (PDF) of
the tree size Stree, which is the total number of nodes on a failure
tree from the root to the time step where it terminates. We can
see that the total tree size has a power-law distribution with
a slope of approximately −3/2. It is interesting to note that
such a distribution is associated with cluster size distributions
in second-order percolation transitions (see, e.g., [27,31,32])
and obtained in classical models of self-organized criticality
[34–38]. Notice also that the same critical exponent has been
observed in real data [23–26].

V. RELATION BETWEEN THE CRITICAL SCALING
AND THE MEAN-FIELD CASE

Buldyrev et al. [5] found both analytically and numerically
the scaling behavior 〈τ 〉 ∼ N1/4 at pMF

c , which is significantly
different from the critical scaling result N1/3 found here at
pc of each realization. Figure 5 shows the scaling behaviors
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FIG. 5. (Color online) (a) Scaling behaviors of the mean (blue)
and the standard deviation (red) of the total time τ at pMF

c = 2.4554/k

(critical) or below pMF
c (noncritical). Here we consider k = 5 and the

number of realizations is M = 3000. (b) Scaled version of (a). Two
more values of p are included: p = 0.4908 and 0.491.
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FIG. 6. (Color online) (a) Scaled PDF of τ using the exponent
1/3 at p = pc for single realizations. Here k = 5 and the number of
realizations is the same as in Fig. 2(b). (b) Scaled PDF of τ using the
exponent 1/4.

of both 〈τ 〉 and στ at and below pMF
c . As can be seen, the

mean behavior is indeed consistent with the MF predictions of
[5]. We will explain in this section this seeming discrepancy
by analyzing the theoretical relationship between the scaling
behaviors at pc of single realizations and at the MF prediction
pMF

c .
In Fig. 5 we observe the scaling rule of 〈τ 〉: 〈τ 〉 ∼

N1/4f (u), where u = (pMF
c − p)N1/α with α = 2. Then we

have f (u) ∼ 1 for u ' 1 and f (u) ∼ u−1/2 for u ( 1. Finally,
for N < N∗ ∼ (pc − p)−3/2, 〈τ 〉 ∼ N1/4, and for N > N∗,
〈τ 〉 ∼ (pc − p)−1/2. Compared with the scaling results for
single realizations (1) and (2), the main difference is the
exponent 1/4 of the scaling of 〈τ 〉 with N . To further validate
our scaling law 〈τ 〉 ∼ N1/3 at p = pc of single realizations,
we also compare in Fig. 6 the two scaling laws for the
PDF of τ : Figure 6(a) presents the PDF of τ for different
values of N according to the scaling assumption τ ∼ N1/3,
whereas Fig. 6(b) gives the PDF of τ according to the scaling
assumption τ ∼ N1/4. As can bee seen from these figures, the
assumption τ ∼ N1/3 seems to better fit the scaling for single
realizations, further supporting Eq. (2).

The origin of the MF observation, 〈τ 〉 ∼ N1/4 and στ ∼
N1/3 (see Fig. 5), which deviates from Eq. (2) for single
realizations, can be explained by considering the fluctuations
that do not appear in the MF case. Given 〈τ 〉 ∼ N1/3 at
pc and 〈τ 〉 ∼ (pc − p)−1/2 when p is below pc, the scaling
behavior at pMF

c can be regarded as the expectation of 〈τ 〉
below pc:

〈τ 〉MF =
∫ ∞

0
〈τ 〉D(x)dx, (7)

where x = pc − p and D(x) is its probability density. From the
scaling results in Fig. 2(c), we know that 〈τ 〉 ∼ N1/3 for pc −
p < N−2/3 and 〈τ 〉 ∼ (pc − p)−1/2 for pc − p > N−2/3. We
also assume that the value of pc follows a Gaussian distribution
N (pMF

c ,σ 2) [which is supported by the distribution of pc in
simulations (see Fig. 7 in the Appendix)] above pMF

c , where
σ ∼ N−1/2. Therefore,

〈τ 〉MF = I1 + I2 ∼
∫ N−2/3

0
N1/3 1√

2πσ
exp

(
− x2

2σ 2

)
dx

+
∫ ∞

N−2/3
x−1/2 1√

2πσ
exp

(
− x2

2σ 2

)
dx. (8)

Let y = x
√

N , which finally yields I1 ∼ N1/6 and I2 ∼ N1/4,
from which 〈τ 〉MF = I1 + I2 ∼ N1/4 follows for large N .

Similarly, we can also calculate the variance of τ using
var(τ ) = 〈τ 2〉 − 〈τ 〉2 and then estimate the scaling result for
the standard deviation at pMF

c . We can finally obtain στ ∼
N1/4, instead of N1/3, seen in Fig. 5(a). The explanation of this
deviation can be understood by performing accurate numerical
integrals for the analogous Eq. (8) for the standard deviation.
This accurate integration shows that for small values of N ,
the scaling of στ with N can be approximated as στ ∼ N1/3.
However, for large N , the slope decreases to N1/4. This might
explain the slope 1/3 of στ at pMF

c observed in simulations,
as shown in Fig. 5(a).

VI. SUMMARY

In this paper we identified a spontaneous second-order
percolation transition occurring during the cascading failures
that controls the first-order abrupt transition. This spontaneous
transition is characterized by cascading-failure trees whose
size distribution is power law with an exponent −3/2 during
the plateau stage. This explains the origin of the long plateau
and its scaling with N found in cascading process near
the abrupt collapse of the coupled networks system. We
also uncovered the theoretical relationship between the two
seemingly contradictory scalings, 〈τ 〉 ∼ N1/4 at the mean-field
criticality and 〈τ 〉 ∼ N1/3 at pc of single realizations, by
considering the deviation of pc in different realizations.
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APPENDIX

1. Distribution of pc around the mean-field prediction

Figure 7 shows the PDF of the normalized values of pc,
p′

c ≡ pc−〈pc〉
σ (pc) , where 〈pc〉 and σ (pc) are the mean and the

standard deviation of pc. This is compared with a standard
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FIG. 7. (Color online) The PDF of the normalized pc, p′
c, for

single realizations in simulations, compared with the standard Gaus-
sian distribution. Here k = 5 and N = 30 000 for 6000 realizations.
We see here that the value of pc follows quite well a Gaussian
distribution.
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Gaussian distribution. Here we can find that pc follows a Gaus-
sian distribution around the MF prediction pMF

c . This supports
our assumption in the main text that pc follows a Gaussian
distribution.

2. Effect of the randomness in network structures

In our simulations there are two types of randomness in each
realization: the structure of the ER network and the random
initial attack. We always change both the networks and the
attack order at the beginning of each realization. However,
when the network is large enough, the randomness of the
network structure is not needed for our results. In Fig. 8 we
compare the scaling behaviors of the total number of cascade
τ in two cases: varying both the networks and the attack order
and varying only the attack order for a given realization. We
find that they have very similar behavior.

10
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10
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N

〈τ
〉, 

σ(
τ)

〈τ〉, varying networks and attack orders
σ(τ), varying networks and attack orders
〈τ〉, varying only attack orders
σ(τ), varying only attack orders

Slope: 1/3

Slope: 1/3

FIG. 8. (Color online) Scaling behaviors of the mean and the
standard deviation of the total time τ at pc for individual realizations.
Two cases are compared here: in each realization, varying both the
networks and the attack order and varying only the attack order. We
consider k = 5 with 3000 realizations for different N values.
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